|
|<
<< Page précédente
1
2
3
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Valérie Berthé - Fractions continues multidimensionnelles et dynamique (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
Le
but de cet exposé est de présenter des généralisations
multidimensionnelles des fractions continues et de l’algorithme
d’Euclide d’un point de vue systèmes dynamiques, en nous concentrant sur
les liens avec la numération et les substitutions. Nous allons
considérer principalement deux types de généralisations, à savoir, les
algorithmes définis par homographies, comme l’algorithme de
Jacobi-Perron, et les fractions continues associées aux algorithmes de
réduction dans les réseaux. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Mike Boyle - Nonnegative matrices : Perron Frobenius theory and related algebra (Part 3)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
Lecture
I. I’ll give a complete elementary presentation of the essential
features of the Perron Frobenius theory of nonnegative matrices for the
central case of primitive matrices (the "Perron" part). (The "Frobenius"
part, for irreducible matrices, and finally the case for general
nonnegative matrices, will be described, with proofs left to
accompanying notes.) For integer matrices we’ll relate "Perron numbers"
to this and Mahler measures. Lecture II. I’ll describe how the
Perron-Frobenius theory generalizes (and fails to generalize) to 1,2,... x 1,2,...
nonnegative matrices. Lecture III. We’ll see the simple, potent
formalism by which a certain zeta function can be associated to a
nonnegative matrix, and its relation to the nonzero spectrum of the
matrix, and how polynomial matrices can be used in this setting for
constructions and conciseness. Lecture IV. We’ll describe a natural
algebraic equivalence relation on finite square matrices over a semiring
(such as Z, Z_+, R, ... ) which refines the nonzero spectrum and is
related to K-theory. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Mark Pollicott - Dynamical Zeta functions (Part 3)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Mark Pollicott - Dynamical Zeta functions (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Marie-José Bertin - Des nombres de Salem à la mesure de Mahler de surfaces K3 (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
Le
récent article de McMullen « Dynamics with small entropy on projective
K3 surfaces » éclaire d’un jour nouveau les nombres de Salem. Ces
entiers algébriques gardent cependant tout leur mystère. On peut tous
les obtenir grâce à la construction de Salem (Boyd (1977)) et cependant
on ignore s’il en existe un inférieur à 1,1762... Après avoir rappelé la
construction de Salem et le théorème de Boyd, on définira la mesure de
Mahler logarithmique d’un polynôme de plusieurs variables. On prouvera
que la mesure de Mahler d’un polynôme de deux variables est la limite
d’une suite de mesures de Mahler de polynômes d’une variable (Boyd
(1981)). On donnera des mesures explicites de mesures de Mahler de
certaines classes de polynômes de 2 et 3 variables. En particulier dans
le cas de 3 variables on présentera deux aspects de l’expression de
cette mesure, un aspect arithmétique comme série L de Hecke d’un corps
quadratique imaginaire et un aspect géométrique comme série L de la
surface K3 définie par le polynôme qui s’exprime comme série L d’une
forme modulaire de poids 3 à coefficients rationnels. Pour terminer, on
évoquera des problèmes plus géométriques de fibrations elliptiques sur
les surfaces K3 algébriques. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Karma Dajani - An introduction to Ergodic Theory of Numbers (Part 3)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
In
this course we give an introduction to the ergodic theory behind common
number expansions, like expansions to integer and non-integer bases,
Luroth series and continued fraction expansion. Starting with basic
ideas in ergodic theory such as ergodicity, the ergodic theorem and
natural extensions, we apply these to the familiar expansions mentioned
above in order to understand the structure and global behaviour of
different number theoretic expansions, and to obtain new and old results
in an elegant and straightforward manner. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Jean-Louis Verger-Gaugry - Limit Equidistribution (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Fabien Durand - Sur le Théorème de Cobham (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Christiane Frougny - Systèmes de numération et automates (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
Automates
finis et langages rationnels de mots finis • Automates finis et mots
infinis • Systèmes de numération à base réelle • Nombres de Pisot,
nombres de Parry et nombres de Perron • Systèmes de numération définis
par une suite Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory, automates, Systèmes de numération
|
Accéder à la ressource
|
|
Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 3)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
The
fundamental problem in the theory of Diophantine approximation is to
understand how well points in the Euclidean space can be approximated by
rational vectors with given bounds on denominators. It turns out that
Diophantine properties of points can be encoded using flows on
homogeneous spaces, and in this course we explain how to use techniques
from the theory of dynamical systems to address some of questions in
Diophantine approximation. In particular, we give a dynamical proof of
Khinchin’s theorem and discuss Sprindzuk’s question regarding
Diophantine approximation with dependent quantities, which was solved
using non-divergence properties of unipotent flows. In conclusion we
explore the problem of Diophantine approximation on more general
algebraic varieties. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
2
3
Page suivante >>
>|
|
documents par page
|