|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Les théorèmes de Gödel : fin d’un espoir ?
/ DCAM - Département Conception et Assistance Multimédia - Université Bordeaux Segalen, Service Culturel - Université Victor Segalen Bordeaux 2
/ 22-02-2006
/ Canal-U - OAI Archive
DESHOUILLERS Jean-Marc
Voir le résumé
Voir le résumé
En 1931, Kurt Gödel (1906 - 1978) démontrait, dans un article révolutionnaire, qu'un système d'axiomes cohérent et suffisamment expressif est susceptible de générer des énoncés dont la validité ne peut être démontrée dans le cadre des règles mêmes qui gouvernent la formulation de ces énoncés et leurs déductions. Apparemment très technique, ce théorème bouleversait la philosophie des mathématiques, et en particulier la vieille question de leur "fondement". Jean-Marc Deshouillers se propose ici de décrire l'avant et l'après Gödel en retraçant l'histoire des théories mathématiques depuis Aristote et Euclide jusqu'au renversement révolutionnaire des fondements mathématiques induit par le théorème d’incomplétude.La conférence a été donnée à l'Université Victor Segalen Bordeaux 2 dans le cadre du cycle de conférences "L'invité du Mercredi" / Saison 2005-2006 sur le thème "L'espoir". Service culturel Université Victor Segalen de Bordeaux 2 / DCAM / Mot(s) clés libre(s) : calculabilité, formalisation mathématique, intuitionnisme, philosophie des mathématiques, théorème de Gödel, théorème d’incomplétude, théorie des ensembles, théorie des groupes, théorie mathématique
|
Accéder à la ressource
|
|
Connaissances et pensée mathématiques : les bases cérébrales de l'intuition numérique
/ UTLS - la suite, Mission 2000 en France
/ 15-06-2000
/ Canal-U - OAI Archive
DEHAENE Stanislas
Voir le résumé
Voir le résumé
Quelles représentations mentales et quelles structures cérébrales permettent au cerveau humain de créer des mathématiques ? Les nouvelles méthodes des sciences cognitives et de l'imagerie cérébrale permettent d'aborder cette question empiriquement, même si nous ne pouvons guère qu'effleurer le sujet en étudiant les plus simples des objets mathématiques : les petits nombres entiers. Je montrerai que la représentation des nombres dans le cerveau humain suit deux lois dont de nombreux mathématiciens, tels Poincaré, Hadamard ou Einstein, avaient pressenti l'existence en faisant appel à leur introspection. Tout d'abord, cette représentation est non-verbale : elle ne fait appel ni aux mots, ni aux aires corticales du langage, mais dépend des régions pariétales associées à la perception de l'espace. En second lieu, elle est susceptible de s'activer en l'absence de toute conscience. La région pariétale fournit une intuition des quantités dont nous ne réalisons l'importance, paradoxalement, que lorsqu'elle est détériorée : une lésion cérébrale, à l'âge adulte comme dans la petite enfance, entraîne une incapacité de calculer et, plus simplement, de comprendre ce que sont les nombres. Ainsi, si les mathématiques de haut niveau se construisent grâce au langage et à l'éducation, leurs fondements les plus élémentaires - concepts de nombre, mais aussi d'espace, de temps, d'opération... - sont à rechercher dans l'organisation même de notre cerveau. Mot(s) clés libre(s) : calcul inconscient, cerveau humain, imagerie cérébrale, intuition des nombres, neurosciences cognitives, philosophie des mathématiques, région pariétale, représentation mentale
|
Accéder à la ressource
|
|
Mathématiques et réalité
/ UTLS au lycée, Mission 2000 en France
/ 14-01-2000
/ Canal-U - OAI Archive
CARTIER Pierre
Voir le résumé
Voir le résumé
Conférence du 14 janvier 2000 par Pierre Cartier. Nous voulons insister sur le cycle de rétroaction des mathématiques et de la réalité, prise dans son sens social et technologique. Les caractéristiques principales des mathématiques nous semblent les suivantes : a) Dégager et organiser un savoir-faire de nature combinatoire : numérations de plus en plus performantes pour traiter de nombres de plus en plus grands, description de formes géométriques et d'agencements. b) Créer des formes nouvelles qui serviront à modeler le monde (architecture, paysages, instruments techniques). c) Inventer et imposer un ordre : les nombres dans l'ordre économique (ou monétaire), les règles d'organisation. d) Garantir le fonctionnement et l'efficacité des procédures mathématiques : démonstrations, algorithmes, non-contradictoires. Le monde régulé par les mathématiques veut minimiser la part des aléas. De larges pans des mathématiques (calcul des probabilités, fractales, ondelettes) sont consacrés à la découverte d'un ordre sous-jacent au désordre apparent. Dans cette perspective, le développement historique des mathématiques, leur validité théorique ou publique, le degré de certitude qu'elles procurent, leurs fondements et leur unité (plus organique que logique), tous ces problèmes se présentent sous un jour nouveau. Mot(s) clés libre(s) : combinatoire, formalisation, forme géométrique, histoire des sciences, intersubjectivité, langage mathématique, nombre, philosophie des mathématiques, représentation du réel, théorie mathématique
|
Accéder à la ressource
|
|
Mathématiques et réalité
/ UTLS au lycée, Mission 2000 en France
/ 14-01-2000
/ Canal-u.fr
CARTIER Pierre
Voir le résumé
Voir le résumé
Conférence du 14 janvier 2000 par Pierre Cartier. Nous voulons insister sur le cycle de rétroaction des mathématiques et de la réalité, prise dans son sens social et technologique. Les caractéristiques principales des mathématiques nous semblent les suivantes : a) Dégager et organiser un savoir-faire de nature combinatoire : numérations de plus en plus performantes pour traiter de nombres de plus en plus grands, description de formes géométriques et d'agencements. b) Créer des formes nouvelles qui serviront à modeler le monde (architecture, paysages, instruments techniques). c) Inventer et imposer un ordre : les nombres dans l'ordre économique (ou monétaire), les règles d'organisation. d) Garantir le fonctionnement et l'efficacité des procédures mathématiques : démonstrations, algorithmes, non-contradictoires. Le monde régulé par les mathématiques veut minimiser la part des aléas. De larges pans des mathématiques (calcul des probabilités, fractales, ondelettes) sont consacrés à la découverte d'un ordre sous-jacent au désordre apparent. Dans cette perspective, le développement historique des mathématiques, leur validité théorique ou publique, le degré de certitude qu'elles procurent, leurs fondements et leur unité (plus organique que logique), tous ces problèmes se présentent sous un jour nouveau. Mot(s) clés libre(s) : combinatoire, représentation du réel, philosophie des mathématiques, nombre, langage mathématique, intersubjectivité, histoire des sciences, forme géométrique, formalisation, théorie mathématique
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|