|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
L'adhésion
/ UTLS - la suite
/ 09-07-2005
/ Canal-U - OAI Archive
LéGER Liliane
Voir le résumé
Voir le résumé
Les phénomènes d'adhésion sont présents partout dans notre quotidien, depuis l'expérience du bricoleur qui dépose un joint de colle pour réparer un objet (et chacun sait que si cela semble simple, ce n'est pas toujours fiable !) jusqu'à l'élaboration d'objets techniquement très complexes (structures alvéolaires de la coiffe de la fusée Ariane par exemple), en passant par notre fonctionnement biologique lui-même, puisque l'adhésion cellulaire est un élément clé de l'organisation des êtres complexes. Mais si ils sont omniprésents, et utilisés en pratique, les phénomènes d'adhésion sont longtemps restés peu compris, quant à leurs mécanismes physiques et physico-chimiques de base, non compréhension qui a été un frein important à leur utilisation technologique. Ceci a profondément changé au cours de ces dix à quinze dernières années, et ce sont ces progrès récents que nous nous attacherons à décrire. On a longtemps pensé que l'adhésion était une question de chimie interfaciale : pour faire tenir ensemble deux solides, il paraissait évident qu'il était nécessaire de créer des liaisons chimiques solides et nombreuses entre les deux surfaces en contact. Nous montrerons que cette idée est loin d'être vraie : si des liaisons chimiques sont utiles pour permettre à un assemblage de résister à des contraintes mécaniques, elles sont très loin de suffire à rendre compte des énergies d'adhésion pratiques. Pour qu'un joint adhésif soit solide, il faut qu'il soit capable, lorsqu'on le sollicite mécaniquement, de consommer de façon irréversible de l'énergie lors de sa déformation, et plus ces dissipations prennent place dans un volume important du matériau, plus l'énergie nécessaire à rompre l'adhésion est grande. La science de l'adhésion est donc une science pluridisciplinaire, mettant en jeu de la chimie et de la physique des interfaces, et, puisque les tests d'adhésion sont des tests de rupture des assemblages, de la mécanique de la rupture. Les progrès récents dans ces différentes disciplines sont à l'origine des progrès récents en science de l'adhésion. Nous montrerons plusieurs exemples dans lesquels des expériences systématiques, conduites sur des systèmes modèles, mettant souvent en jeu des polymères (car la plupart des adhésifs sont des polymères) ont permis d'identifier de façon précise les mécanismes moléculaires mis en jeu lors de la formation puis de la rupture d'assemblages adhésifs, et donc ouvert la voie à l'utilisation de ces mécanismes de façon optimisée. Mot(s) clés libre(s) : adhésion, cohésion, collage, dissipation d'énergie, énergie de rupture, mécanique de la rupture, mouillage, pelage, physique de la matière condensée, polymère, résistance mécanique, tension interfaciale
|
Accéder à la ressource
|
|
Colloïdes et biotechnologies
/ UTLS - la suite
/ 29-10-2002
/ Canal-U - OAI Archive
BIBETTE Jérôme
Voir le résumé
Voir le résumé
L'exposé introduit lutilisation des colloïdes dans le domaine du diagnostic biologique. Nous introduirons les bases de la physico chimie des colloïdes ainsi que les approches classiques du diagnostic biologique: test d'agglutination à partir de particules de Latex ou dor, test ELISA avec des particules magnétiques. Ensuite nous présenterons une nouvelle approche de diagnostic basée sur la formation de nano structures colloïdales magnétiques. Le principe repose sur l'aptitude de certains colloïdes magnétiques, à la fois suffisamment petits et susceptibles, à former rapidement des lignes réversibles sous champ. Nous montrerons que cette solution colloïdale change de couleur sous l'action d'un champ magnétique, conséquence de la diffraction des chaînes auto assemblées, et comment ce phénomène peut conduire à la détermination du profil de force entre colloïdes. Si les particules sont greffées par un anticorps, alors en présence de l'antigène spécifique capable de ponter deux anticorps, les lignes peuvent devenir permanentes et quasi irréversibles. Nous discuterons comment la persistance des lignes peut révéler de manière très sensible la quantité d'antigène introduite, et pourquoi la force magnétique imposée à chaque colloïde peut accélérer la complexation antigène anticorps. Nous finirons par une introduction à l'utilisation des colloïdes en micro fluidique. Nous montrerons comment les auto assemblages magnétiques peuvent devenir des matrices de séparation très efficaces pour des entités biologiques comme des ADN génomiques ou des cellules. Mot(s) clés libre(s) : biotechnologie, colloïde, diagnostic biologique, matériau, matière divisée, matière molle, microfluidique, nanomatériau, phase, physico-chimie, physique de la matière condensée, science des matériaux
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|