Nouveautés
Recherche simple :
Accueil
Documents
Pédagogie
Thèses
Publications Scientifiques
Multi-formats
Thèses > Par auteur en fr
  • Nouveautés
  • Recherche avancée
  • Par auteur
  • Par date
  • Par laboratoire
  • Recherche thématique
Auteurs
Auteurs > P > Pitoun Frédéric
Niveau supérieur
  • 2 ressources ont été trouvées. Voici les résultats 1 à 2
  |< << Page précédente 1 Page suivante >> >| documents par page
Tri :   Date Editeur Auteur Titre

Calculs théoriques et explicites en théorie d'Iwasawa


Université de Franche-Comté / 17-09-2010
Pitoun Frédéric
Voir le résumé
Voir le résumé
Cette thèse s`intéresse à divers aspects de la théorie d'lwasawa. Dans le premier chapitre, on étudie les propriétés des composantes isotypiques d'un module sur l'anneau des entiers p-adiques dans le cas non semi-simple. Ces préliminaires algébriques effectués, on les utilise pour généraliser un résultat de lchimura, démontrant dans le cas semi-simple la trivialité de la partie moins d'un certain module d'lwasawa associe à un corps de nombres K contenant une racine primitive p-ième de l'unité. Par suite, on s ïntéresse au calcul explicite du radical de Kummer associé à un corps de nombres K contenant une racine primitive p-ième de l unité et l'on tente d effecter quelques heuristiques utilisant le logiciel pari-gp. Le troisième chapitre généralise un théorème dû a lchimura, utilisant les techniques développées par Nguyen Quang Do, Le Floc h et Movaheddi, théorème qui relie la partie plus des conoyaux de capitulation à la torsion de la partie moins d un certain module d Iwasawa associé au corps K. Ce résultat acquis, on donne l'ébauche d'un algorithme permettant de vérifier numériquement la conjecture de Greenberg. Enfin le quatrième chapitre expose un algorithme destiné a calculer explicitement la partie de p-torsion du groupe de Galois de la pro-p-extension abélienne non-ramifiée en dehors de p maximale d un corps de nombres K, algorithme implémente en utilisant le logiciel pari-gp. Par suite on tente de donner une interprétation heuristique des résultats numériques obtenus via les heuristiques de Cohen-Lenstra.

Calculs théoriques et explicites en théorie d'Iwasawa


Université de Franche-Comté / 17-09-2010
Pitoun Frédéric
Voir le résumé
Voir le résumé
Cette thèse s`intéresse à divers aspects de la théorie d'lwasawa. Dans le premier chapitre, on étudie les propriétés des composantes isotypiques d'un module sur l'anneau des entiers p-adiques dans le cas non semi-simple. Ces préliminaires algébriques effectués, on les utilise pour généraliser un résultat de lchimura, démontrant dans le cas semi-simple la trivialité de la partie moins d'un certain module d'lwasawa associe à un corps de nombres K contenant une racine primitive p-ième de l'unité. Par suite, on s ïntéresse au calcul explicite du radical de Kummer associé à un corps de nombres K contenant une racine primitive p-ième de l unité et l'on tente d effecter quelques heuristiques utilisant le logiciel pari-gp. Le troisième chapitre généralise un théorème dû a lchimura, utilisant les techniques développées par Nguyen Quang Do, Le Floc h et Movaheddi, théorème qui relie la partie plus des conoyaux de capitulation à la torsion de la partie moins d un certain module d Iwasawa associé au corps K. Ce résultat acquis, on donne l'ébauche d'un algorithme permettant de vérifier numériquement la conjecture de Greenberg. Enfin le quatrième chapitre expose un algorithme destiné a calculer explicitement la partie de p-torsion du groupe de Galois de la pro-p-extension abélienne non-ramifiée en dehors de p maximale d un corps de nombres K, algorithme implémente en utilisant le logiciel pari-gp. Par suite on tente de donner une interprétation heuristique des résultats numériques obtenus via les heuristiques de Cohen-Lenstra

rss |< << Page précédente 1 Page suivante >> >| documents par page
© 2006-2010 ORI-OAI