|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Physique et médecine : l'imagerie médicale
/ UTLS - la suite
/ 07-07-2005
/ Canal-U - OAI Archive
SYROTA André
Voir le résumé
Voir le résumé
L'imagerie médicale a sans aucun doute entraîné ces vingt dernières années une transformation radicale dans la façon d'aborder le diagnostic et le suivi thérapeutique. Un diagnostic de localisation d'une lésion cérébrale qui nécessitait un examen clinique long et minutieux par un neurologue expérimenté se fait aujourd'hui avec une précision millimétrique grâce au scanner ou à l'imagerie par résonance magnétique (IRM). Là où le maître entouré de ses élèves démontrait que la lésion ischémique ou tumorale devait siéger au niveau de tel noyau du thalamus (la vérification ayant lieu malheureusement souvent quelques semaines plus tard sur les coupes de cerveau), le neuroradiologue parvient au même résultat en quelques minutes. On pourrait multiplier les exemples ; là où le cardiologue se fiait à son auscultation et à des clichés de thorax, l'échocardiographie montre en temps réel les mouvements des valves cardiaques et la dynamique de la contraction ventriculaire, la scintigraphie myocardique précise la localisation des zones de myocarde ischémique et les anomalies de sa contraction ; demain l'IRM permettra de voir la circulation coronaire et le tissu myocardique et remplacera l'angiographie par voie artérielle. On pourrait encore citer l'échographie en obstétrique, en hépatologie ou en urologie, la scintigraphie dans la détection des lésions de la thyroïde, des métastases osseuses ou de l'embolie pulmonaire. Aujourd'hui la tomographie par émission de positons (TEP) est en train de devenir la méthode incontournable en cancérologie, non pas tant pour le diagnostic du cancer que pour en préciser l'extension, l'existence de métastases, l'évolution sous traitement après chimiothérapie, chirurgie ou radiothérapie ou encore l'apparition de récidives ou de métastases tardives. Au milieu du 19ème siècle, l'inventeur de la médecine expérimentale, Claude Bernard indiquait à Ernest Renan qui l'a relaté, que « l on ne connaîtrait la physiologie que le jour où l'on saura décrire le voyage d'un atome d'azote depuis son entrée dans l'organisme jusqu'à sa sortie». Ce qui était totalement hors de portée du savant de cette époque, connaît en ce début du 21ème siècle une pleine réalisation grâce à une série d'avancées techniques rendues d'abord possibles par la radioactivité et aussi dans une certaine mesure par l'IRM et de toutes façons par la combinaison de plusieurs méthodes lorsqu'on aborde la pathologie. C'est certainement dans la description du voyage fait par le médicament dans le corps que réside aujourd'hui une des avancées les plus intéressantes dans le domaine pharmaceutique. Mais nous verrons aussi que quand nous écoutons, parlons, bougeons, réfléchissons... certaines aires de notre cerveau s'activent. Cette activation électrique et chimique des neurones se traduit par une augmentation du débit sanguin local dans les régions cérébrales concernées par cette activation. La TEP d'abord puis en utilisant les mêmes principes physiologiques, l'IRM aujourd'hui permet de produire des images sensibles au débit sanguin et ce, sans recours à l'injection d'une substance ou molécule particulière. Il ne peut s'agir dans cette conférence de décrire les principes physiques, les indications de toutes ces méthodes et les résultats qu'elles permettent d'obtenir en clinique. Par contre la comparaison de l'origine et de l'évolution de trois de ces méthodes, la radiologie, la médecine nucléaire et l'imagerie par résonance magnétique nucléaire est intéressante. La perspective historique permet en effet de mieux comprendre la genèse, l'évolution et les indications de ces différentes méthodes qui ont toutes leur point de départ dans la physique. Mot(s) clés libre(s) : imagerie cérébrale, imagerie médicale, imagerie par résonance magnétique nucléaire, IRM, physique des particules, physique nucléaire, physique quantique, positon, radioactivité, radiologie, tomographie
|
Accéder à la ressource
|
|
Voir et comprendre les dysfonctionnements du cerveau
/ William ROSTENE, BioTV
/ 03-09-2002
/ Canal-U - OAI Archive
ROSTENE William
Voir le résumé
Voir le résumé
Discussion sur les avancées récentes dans le domaine de l'imagerie cérébrale et de la transplantation de cellules neuronales chez le singe.GénériqueAnne Hervé Minvielle, Philippe Hantraye, William Rostène Mot(s) clés libre(s) : cerveau, imagerie cérébrale, imagerie médicale, imagerie par résonance magnétique, IRM, neuroscience, positon, sciences cognitives, système nerveux, TEP, tomographie
|
Accéder à la ressource
|
|
Semaine du cerveau 2002 : neuroimagerie fonctionnelle (1)
/ BioTV
/ 13-03-2002
/ Canal-U - OAI Archive
HANTRAYE Philippe
Voir le résumé
Voir le résumé
Dans le cadre de la semaine du cerveau 2002, le Dr Hantraye fait le point sur l'imagerie fonctionnelle au travers des méthodes modernes d'exploration. Mot(s) clés libre(s) : cerveau, fonction cognitive, imagerie cérébrale, imagerie médicale, imagerie par résonance magnétique, IRM, neuroscience, positon, radiographie, rayon X, sciences cognitives, système nerveux, TEP, tomographie
|
Accéder à la ressource
|
|
L'imagerie médicale au CEA
/ ENS Lyon CultureSciences-Physique, Catherine Simand
/ 10-03-2006
/ Unisciel
CEA - espace jeunes
Voir le résumé
Voir le résumé
Un lien vers un dossier thématique du CEA sur l'imagerie médicale
et les recherches actuelles au CEA dans ce domaine. Principe de la médecine
nucléaire, utilisation de traceurs radioactifs, tomographie par émission de
positons, imagerie par résonance magnétique. Mot(s) clés libre(s) : imagerie médicale, médecine nucléaire, traceur radioactif, tomographie par émission de positons, TEP, rayon gamma, cyclotron, imagerie par résonance magnétique, IRM, cerveau, RMN, Résonance magnétique nucléaire
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|