|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Matière à sensation. La viande, enjeu de l’art contemporain
/ Philippe KERGRAISSE
/ 31-05-2015
/ Canal-u.fr
Lamoureux Johanne
Voir le résumé
Voir le résumé
Qu’il s’agisse de la couverture de l’ouvrage de Monika Wagner (Das Material der Kunst, 2002) ou de l’iconographie d’un livre de Paul Ardenne (Extrême : esthétique de la limite dépassée, 2006), la viande apparaît souvent désormais comme une matière exemplaire, et non seulement comme un motif ou un thème, de l’art contemporain dont elle résumerait en quelque sorte la valeur de choc. Mais l’usage littéral de la viande dans les pratiques artistiques n’est pas nouveau et il ne vise pas toujours à faire sensation. Il arrive que l’enjeu de son emploi soit de problématiser la frontière précaire, le basculement arbitraire de la chair en viande ou encore d’indexer une appétence toujours plus ou moins contrariée pour le «réel». Mot(s) clés libre(s) : représentation du réel, matière, viande
|
Accéder à la ressource
|
|
Illusion d’optique
/ Université de Nice Sophia Antipolis
/ 07-12-2009
/ Canal-U - OAI Archive
COULLET Pierre
Voir le résumé
Voir le résumé
Lundi 07/12/2009, Pierre Coullet : « Illusion d’optique» Mot(s) clés libre(s) : art concret, art plastique, Edmond Vernassa, focalisation de la lumière, onde, optique, rayon lumineux, réfraction, représentation du réel
|
Accéder à la ressource
|
|
L'image, entre vie et intelligence artificielles
/ UTLS - la suite
/ 09-07-2004
/ Canal-U - OAI Archive
COUCHOT Edmond
Voir le résumé
Voir le résumé
pas de résumé disponible Mot(s) clés libre(s) : cybernétique, image numérique, intelligence artificielle, objet virtuel, perspective, production d'image, représentation du réel, simulation numérique, technique figurative
|
Accéder à la ressource
|
|
Mathématiques et réalité
/ UTLS au lycée, Mission 2000 en France
/ 14-01-2000
/ Canal-U - OAI Archive
CARTIER Pierre
Voir le résumé
Voir le résumé
Conférence du 14 janvier 2000 par Pierre Cartier. Nous voulons insister sur le cycle de rétroaction des mathématiques et de la réalité, prise dans son sens social et technologique. Les caractéristiques principales des mathématiques nous semblent les suivantes : a) Dégager et organiser un savoir-faire de nature combinatoire : numérations de plus en plus performantes pour traiter de nombres de plus en plus grands, description de formes géométriques et d'agencements. b) Créer des formes nouvelles qui serviront à modeler le monde (architecture, paysages, instruments techniques). c) Inventer et imposer un ordre : les nombres dans l'ordre économique (ou monétaire), les règles d'organisation. d) Garantir le fonctionnement et l'efficacité des procédures mathématiques : démonstrations, algorithmes, non-contradictoires. Le monde régulé par les mathématiques veut minimiser la part des aléas. De larges pans des mathématiques (calcul des probabilités, fractales, ondelettes) sont consacrés à la découverte d'un ordre sous-jacent au désordre apparent. Dans cette perspective, le développement historique des mathématiques, leur validité théorique ou publique, le degré de certitude qu'elles procurent, leurs fondements et leur unité (plus organique que logique), tous ces problèmes se présentent sous un jour nouveau. Mot(s) clés libre(s) : combinatoire, formalisation, forme géométrique, histoire des sciences, intersubjectivité, langage mathématique, nombre, philosophie des mathématiques, représentation du réel, théorie mathématique
|
Accéder à la ressource
|
|
Mathématiques et réalité
/ UTLS au lycée, Mission 2000 en France
/ 14-01-2000
/ Canal-u.fr
CARTIER Pierre
Voir le résumé
Voir le résumé
Conférence du 14 janvier 2000 par Pierre Cartier. Nous voulons insister sur le cycle de rétroaction des mathématiques et de la réalité, prise dans son sens social et technologique. Les caractéristiques principales des mathématiques nous semblent les suivantes : a) Dégager et organiser un savoir-faire de nature combinatoire : numérations de plus en plus performantes pour traiter de nombres de plus en plus grands, description de formes géométriques et d'agencements. b) Créer des formes nouvelles qui serviront à modeler le monde (architecture, paysages, instruments techniques). c) Inventer et imposer un ordre : les nombres dans l'ordre économique (ou monétaire), les règles d'organisation. d) Garantir le fonctionnement et l'efficacité des procédures mathématiques : démonstrations, algorithmes, non-contradictoires. Le monde régulé par les mathématiques veut minimiser la part des aléas. De larges pans des mathématiques (calcul des probabilités, fractales, ondelettes) sont consacrés à la découverte d'un ordre sous-jacent au désordre apparent. Dans cette perspective, le développement historique des mathématiques, leur validité théorique ou publique, le degré de certitude qu'elles procurent, leurs fondements et leur unité (plus organique que logique), tous ces problèmes se présentent sous un jour nouveau. Mot(s) clés libre(s) : combinatoire, représentation du réel, philosophie des mathématiques, nombre, langage mathématique, intersubjectivité, histoire des sciences, forme géométrique, formalisation, théorie mathématique
|
Accéder à la ressource
|
|
Physique et mathématiques
/ UTLS - la suite
/ 16-06-2005
/ Canal-U - OAI Archive
BRéZIN Edouard
Voir le résumé
Voir le résumé
La physique et les mathématiques sont étroitement mêlées depuis toujours. Tantôt c'est la première qui conduit à développer les mathématiques impliquées par les lois de la nature, tantôt des structures mathématiques élaborées sans référence au monde extérieur se trouvent être précisément adaptées à la description de phénomènes découverts pourtant postérieurement. C'est là l'efficacité déraisonnable des mathématiques dans les sciences de la nature dont parlait Eugène Wigner. Jamais les interactions entre physique et mathématiques n'ont été plus intenses qu'à notre époque, jamais la description des phénomènes naturels n'a requis des mathématiques aussi savantes qu'aujourd'hui. Pourtant il est important de comprendre la différence de nature entre ces deux disciplines. La physique n'établit pas de théorèmes ; jusqu'à présent elle se contente de modèles dont les capacités à prédire, et la comparaison avec l'expérience établissent la validité, avec une économie dans la description et une précision parfois confondantes. Néanmoins nous savons que tous les modèles dont nous disposons actuellement, toutes les lois, ne sont que des descriptions "effectives" comme l'on dit aujourd'hui, c'est-à-dire adaptées aux échelles de temps, de distance, d'énergie avec lesquelles nous observons, mais dont nous savons de manière interne, avant même que des phénomènes nouveaux les aient invalidées, qu'elles sont inaptes à aller beaucoup plus loin. Y aura t-il une description définitive qui, tel un théorème, s'appliquerait sans limitations? Ce rêve d'une théorie ultime, où la physique rejoindrait les mathématiques, caressé par certains, laisse beaucoup d'autres sceptiques ; quoiqu'il en soit la question ne sera certainement pas tranchée rapidement. Mot(s) clés libre(s) : chaos, électromagnétisme, force nucléaire, gravitation, histoire des sciences, mécanique quantique, modèle d'Ising, physique statistique, physique théorique, relativité générale, représentation du réel, système dynamique, théorie des cordes
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|