Tri :
Date
Editeur
Auteur
Titre
|
|
Physique et médecine : l'imagerie médicale
/ UTLS - la suite
/ 07-07-2005
/ Canal-U - OAI Archive
SYROTA André
Voir le résumé
Voir le résumé
L'imagerie médicale a sans aucun doute entraîné ces vingt dernières années une transformation radicale dans la façon d'aborder le diagnostic et le suivi thérapeutique. Un diagnostic de localisation d'une lésion cérébrale qui nécessitait un examen clinique long et minutieux par un neurologue expérimenté se fait aujourd'hui avec une précision millimétrique grâce au scanner ou à l'imagerie par résonance magnétique (IRM). Là où le maître entouré de ses élèves démontrait que la lésion ischémique ou tumorale devait siéger au niveau de tel noyau du thalamus (la vérification ayant lieu malheureusement souvent quelques semaines plus tard sur les coupes de cerveau), le neuroradiologue parvient au même résultat en quelques minutes. On pourrait multiplier les exemples ; là où le cardiologue se fiait à son auscultation et à des clichés de thorax, l'échocardiographie montre en temps réel les mouvements des valves cardiaques et la dynamique de la contraction ventriculaire, la scintigraphie myocardique précise la localisation des zones de myocarde ischémique et les anomalies de sa contraction ; demain l'IRM permettra de voir la circulation coronaire et le tissu myocardique et remplacera l'angiographie par voie artérielle. On pourrait encore citer l'échographie en obstétrique, en hépatologie ou en urologie, la scintigraphie dans la détection des lésions de la thyroïde, des métastases osseuses ou de l'embolie pulmonaire. Aujourd'hui la tomographie par émission de positons (TEP) est en train de devenir la méthode incontournable en cancérologie, non pas tant pour le diagnostic du cancer que pour en préciser l'extension, l'existence de métastases, l'évolution sous traitement après chimiothérapie, chirurgie ou radiothérapie ou encore l'apparition de récidives ou de métastases tardives. Au milieu du 19ème siècle, l'inventeur de la médecine expérimentale, Claude Bernard indiquait à Ernest Renan qui l'a relaté, que « l on ne connaîtrait la physiologie que le jour où l'on saura décrire le voyage d'un atome d'azote depuis son entrée dans l'organisme jusqu'à sa sortie». Ce qui était totalement hors de portée du savant de cette époque, connaît en ce début du 21ème siècle une pleine réalisation grâce à une série d'avancées techniques rendues d'abord possibles par la radioactivité et aussi dans une certaine mesure par l'IRM et de toutes façons par la combinaison de plusieurs méthodes lorsqu'on aborde la pathologie. C'est certainement dans la description du voyage fait par le médicament dans le corps que réside aujourd'hui une des avancées les plus intéressantes dans le domaine pharmaceutique. Mais nous verrons aussi que quand nous écoutons, parlons, bougeons, réfléchissons... certaines aires de notre cerveau s'activent. Cette activation électrique et chimique des neurones se traduit par une augmentation du débit sanguin local dans les régions cérébrales concernées par cette activation. La TEP d'abord puis en utilisant les mêmes principes physiologiques, l'IRM aujourd'hui permet de produire des images sensibles au débit sanguin et ce, sans recours à l'injection d'une substance ou molécule particulière. Il ne peut s'agir dans cette conférence de décrire les principes physiques, les indications de toutes ces méthodes et les résultats qu'elles permettent d'obtenir en clinique. Par contre la comparaison de l'origine et de l'évolution de trois de ces méthodes, la radiologie, la médecine nucléaire et l'imagerie par résonance magnétique nucléaire est intéressante. La perspective historique permet en effet de mieux comprendre la genèse, l'évolution et les indications de ces différentes méthodes qui ont toutes leur point de départ dans la physique. Mot(s) clés libre(s) : imagerie cérébrale, imagerie médicale, imagerie par résonance magnétique nucléaire, IRM, physique des particules, physique nucléaire, physique quantique, positon, radioactivité, radiologie, tomographie
|
Accéder à la ressource
|
|
L'imagerie médicale
/ ENS Lyon CultureSciences-Physique, Catherine Simand
/ 08-06-2009
/ Unisciel
Simand Catherine
Voir le résumé
Voir le résumé
Une série de ressources proposées par les sites ENS/DGESCO au sujet de l'imagerie médicale (radiologie, échographie, IRM...). Mot(s) clés libre(s) : imagerie médicale, image médicale, radiographie, radiologie, rayons X, RMN, IRM, résonance magnétique nucléaire, imagerie par résonance magnétique, imagerie ultrasonore, ultra-son, échographie
|
Accéder à la ressource
|
|
De la transformée de Fourier à l’imagerie médicale
/ Inria / Interstices
/ 29-04-2019
/
Grenier Denis
Voir le résumé
Voir le résumé
L'imagerie médicale ne serait pas ce qu'elle est aujourd'hui sans la fameuse transformée de Fourier. 150 ans après sa découverte, cette technique reste d'actualité et même si de nouvelles pistes voient le jour, c'est bien à elle que l'on doit les immenses progrès réalisés en imagerie médicale ! Mot(s) clés libre(s) : transformée de Fourier, imagerie médicale, FFT, résonance magnétique nucléaire, IRM
|
Accéder à la ressource
|
|
Le traitement des images
/ Mission 2000 en France
/ 09-09-2000
/ Canal-U - OAI Archive
FAUGERAS Olivier
Voir le résumé
Voir le résumé
Mon exposé est centré sur un aspect du traitement d'images, celui du traitement de l'information tridimensionnelle. Je prendrai comme point de départ les idées de David Marr dont l'influence a été déterminante à la fois sur les neurosciences de la vision et sur le traitement d'images ou la vision par ordinateur. L'idée selon laquelle la vision est notamment un problème de traitement de l'information qui peut être abordé en utilisant des contraintes assez générales issues de la physique et de la géométrie pour construire une représentation des surfaces des objets présents et de leurs mouvements s'est avérée extrêmement fructueuse tant du point de vue théorique pour répondre précisément à une partie de la question " qu'est-ce que voir ? " que du point de vue applicatif pour résoudre de nombreux problèmes où intervient la perception visuelle robotique au sens large, c'est-à-dire celle d'un système mécanique/informatique. En me plaçant de trois points de vue, mathématique, algorithmique et biologique, je montrerai comment une combinaison d'indices visuels tels que les variations spatiales d'intensité et de texture, le mouvement, les contours d'occultation ou encore la stéréoscopie peut fournir de l'information sur la forme et le mouvement tridimensionnels des surfaces des objets. J'illustrerai mon propos par quelques exemples d'applications comme le calcul de l'orientation d'un robot dans l'espace, la génération de déplacements, la reconnaissance d'objets et la réalité augmentée. Mot(s) clés libre(s) : David Marr, image de synthèse, image numérique, modélisation, perception visuelle, représentation des formes, résonance magnétique nucléaire, stéréoscopie, traitement d'images, traitement de l'information, vision par ordinateur
|
Accéder à la ressource
|
|
Hautes performances en RMN et applications
/ Académie de Lyon - Journée "Milieux extrêmes", ENS Lyon CultureSciences-Physique, Catherine Simand
/ 05-02-2009
/ Unisciel
Emsley Lyndon
Voir le résumé
Voir le résumé
Une conférence de Lyndon Emsley, chercheur au Centre de RMN à
Très Hauts Champs, Université de Lyon, présentée dans le cadre de la journée
académique enseignement-recherche sur les "Milieux extrêmes", à Lyon. Mot(s) clés libre(s) : RMN, Résonance magnétique nucléaire, spin, précession, champ magnétique, effet Zeeman, spectroscopie, spectroscopie de radiofréquence, réponse impulsionelle, spectre RMN, imagerie par résonance magnétique, IRM, imagerie médicale
|
Accéder à la ressource
|
|
L'Imagerie par Résonance Magnétique (IRM). À l'origine : la résonance magnétique nucléaire
/ ENS Paris CultureSciences-Chimie, Hagop Demirdjian
/ 04-11-2007
/ Unisciel
Demirdjian Hagop
Voir le résumé
Voir le résumé
Lien vers un article du site CultureSciences-Chimie. L'Imagerie
par Résonance Magnétique (IRM) a été développée à partir de 1973. Elle est
rapidement devenue la méthode de choix dans plusieurs domaines médicaux, en
particulier ceux en relation avec le cerveau (étude des maladies neurologiques,
visualisation du cerveau en activité...). L'IRM est adaptée d'une des principales
techniques d'analyse utilisée en chimie, la Résonance Magnétique Nucléaire (RMN.)
Cet article expose le principe physique commun aux deux méthodes. Mot(s) clés libre(s) : imagerie médicale, imagerie par résonance magnétique, IRM, cerveau, RMN, Résonance magnétique nucléaire, spin, précession, champ magnétique, spectroscopie, réponse impulsionelle, spectre RMN
|
Accéder à la ressource
|
|
L'imagerie médicale par résonance magnétique
/ Mission 2000 en France
/ 16-03-2000
/ Canal-U - OAI Archive
COZZONE Patrick
Voir le résumé
Voir le résumé
Le Phénomène de Résonance Magnétique Nucléaire (RMN) découvert en 1946 est relatif aux propriétés magnétiques des noyaux des atomes. En médecine, il a donné naissance à l'Imagerie par Résonance Magnétique (IRM) qui constitue une des avancées les plus importantes de l'histoire de la médecine. L'IRM permet d'obtenir des images anatomiques du corps humain avec une finesse inégalée, sans avoir recours à des radiations ionisantes ou à l'injection de traceurs radioactifs. L'examen par IRM est indolore et peut être répété sans danger. La Spectrométrie de Résonance Magnétique (SRM) est une autre application du phénomène de résonance magnétique dans l'exploration du corps humain. La SRM qui connaît à présent un développement très rapide, analyse et visualise les réactions chimiques qui se produisent dans les tissus et les organes sans avoir à faire de prélèvements (biopsies). On obtient par SRM des images métaboliques du cerveau et de certains autres organes dont les anomalies éventuelles permettent de diagnostiquer de façon très précoce de nombreuses maladies et de quantifier l'effet des médicaments. Une application en plein développement concerne l'angiographie par résonance magnétique (ARM) qui permet la visualisation des vaisseaux de façon non invasive. Enfin, le fonctionnement du cerveau lorsqu'il gère des tâches motrices ou sensorielles peut être suivi par les nouvelles techniques de l'IRM fonctionnelle qui sont basées sur les variations du débit et de l'oxygénation du sang dans le tissu cérébral. Ces différentes modalités de l'Imagerie Médicale par Résonance Magnétique seront illustrées dans leurs applications à l'exploration du cerveau de l'homme. Mot(s) clés libre(s) : angiographie, imagerie médicale, imagerie par résonance magnétique, IRM, rayon X, résonance magnétique nucléaire, RMN, spectroscopie, SRM
|
Accéder à la ressource
|
|
Omniprésent magnétisme
/ CEA - Technologies, ENS Lyon CultureSciences-Physique, Catherine Simand
/ 09-06-2008
/ Unisciel
Clefs CEA n°56
Voir le résumé
Voir le résumé
Un lien vers un dossier thématique du CEA sur le magnétisme traité en
quatre grands chapitres : Aimants et matériaux magnétiques ; RMN, magnétisme et santé ; Le
magnétisme de l'ultime ; Le magnétisme, la Terre et l'espace. Mot(s) clés libre(s) : aimant, magnétisme, RMN, résonance magnétique nucléaire, imagerie cérébrale, nanomagnétisme, aimant supraconducteur, imagerie médicale, résonance magnétique, spintronique, magnétisme frustré, champ magnétique terrestre, magnétomètre
|
Accéder à la ressource
|
|
Localiser et identifier une molécule
/ UTLS - la suite, Mission 2000 en France
/ 22-08-2000
/ Canal-U - OAI Archive
CHAQUIN Patrick
Voir le résumé
Voir le résumé
Au début du siècle, la caractérisation des molécules consistait essentiellement en tests chimiques donnant naissance à des précipités, des couleurs, voire des odeurs. Ces techniques ont été supplantées par des méthodes physiques, dans lesquelles les molécules, soumises à certaines stimulations fournissent, sous forme de diagramme, une réponse ou spectre. Plusieurs méthodes spectroscopiques étudient l'interaction avec la matière des ondes électromagnétiques dans divers domaines de longueur d'onde. Le domaine de l'infrarouge (IR) permet de reconnaître la présence de certaines liaisons ou groupements d'atomes et fournit une " empreinte digitale " caractéristique. Dans le domaine des ondes radio, la résonance magnétique nucléaire (RMN) s'applique en premier lieu au carbone et à l'hydrogène mais également à de nombreux autres éléments. Cette méthode a connu depuis 1960 d'extraordinaires développements. L'un des plus récents, la RMN à deux dimensions, met en évidence des connexions entre atomes d'où une véritable cartographie moléculaire. Dans le domaine de la lumière visible ou ultaviolette, les renseignements obtenus sont d'une moindre richesse, mais cette spectroscopie, avec d'ailleurs l'IR, permet l'étude de molécules hors de notre atteinte comme celles des atmosphères planétaires ou de l'espace interstellaire. Enfin la spectrométrie de masse (SM) étudie les fragmentations des molécules sous l'effet, par exemple, d'un bombardement d'électrons. Des masses de ces fragments on peut déduire leur formule chimique qui permet de reconstituer la molécule originelle. Par ailleurs, ces spectres fournissent une signature qui, traitée numériquement, permet une identification automatique si la molécule a déjà été répertoriée dans une bibliothèque. Cette technique, couplée avec une méthode de séparation telle que la chromatographie en phase gazeuse est d'une puissance inégalée pour l'analyse de mélanges complexes. Mot(s) clés libre(s) : chimie moléculaire, chromatographie, conformation, infra-rouge, IRM, micro-onde, modélisation, molécule, résonance magnétique nucléaire, spectrométrie de masse, spectroscopie, ultra-violet
|
Accéder à la ressource
|
|
L'imagerie médicale au CEA
/ ENS Lyon CultureSciences-Physique, Catherine Simand
/ 10-03-2006
/ Unisciel
CEA - espace jeunes
Voir le résumé
Voir le résumé
Un lien vers un dossier thématique du CEA sur l'imagerie médicale
et les recherches actuelles au CEA dans ce domaine. Principe de la médecine
nucléaire, utilisation de traceurs radioactifs, tomographie par émission de
positons, imagerie par résonance magnétique. Mot(s) clés libre(s) : imagerie médicale, médecine nucléaire, traceur radioactif, tomographie par émission de positons, TEP, rayon gamma, cyclotron, imagerie par résonance magnétique, IRM, cerveau, RMN, Résonance magnétique nucléaire
|
Accéder à la ressource
|
|