|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Comment les révolutions de l'information et des communications ont-elles été possibles ?
/ Mission 2000 en France
/ 12-08-2000
/ Canal-U - OAI Archive
WEISBUCH Claude
Voir le résumé
Voir le résumé
Les révolutions de l'information et des communications vont continuer à bouleverser tous les domaines de l'activité humaine. Ces révolutions sont nées du codage de l'information sous forme de paquets d'électrons ou de photons et de la capacité de manipuler et transmettre ces paquets d'électrons ou de photons de manière de plus en plus efficace et économique. À la base de cette capacité se trouvent les matériaux semi-conducteurs. Rien ne prédisposait ces matériaux à un tel destin : ils ont des propriétés " classiques " médiocres qui les rendent " commandables " : par exemple, leur comportement électrique a longtemps semblé erratique, car très sensible aux " impuretés ". Cette capacité à changer de conductivité électrique, devenue " contrôlée " par la compréhension physique des phénomènes et l'insertion locale d'impuretés chimiques, permet de commander le passage de courant par des électrodes. On a alors l'effet d'amplification du transistor, à la base de la manipulation électronique de l'information. La sensibilité des semi-conducteurs aux flux lumineux en fait aussi les détecteurs de photons dans les communications optiques, et le phénomène inverse d'émission lumineuse les rend incontournables comme sources de photons pour les télécommunications, et bientôt pour l'éclairage. Les progrès des composants et systèmes sont liés aux deux démarches simultanées d'intégration des éléments actifs sur un même support, la " puce ", et de miniaturisation. Une des immenses surprises a été le caractère " vertueux " de la miniaturisation : plus les composants sont petits, meilleur est leur fonctionnement ! On a pu ainsi gagner en trente-cinq ans simultanément plusieurs facteurs de 100 millions à 1 milliard, en termes de complexité des circuits, réduction de coût, fiabilité, rendement de fabrication. Le problème des limites physiques est cependant aujourd'hui posé : jusqu'où la miniaturisation peut-elle continuer ? Combien d'atomes faut-il pour faire un transistor qui fonctionne encore ? Y-a t'il d'autres matériaux que les semi-conducteurs qui permettraient d'aller au delà des limites physiques, ou encore d'autres moyens de coder l'information plus efficaces que les électrons ou les photons ? Ce sont les questions que se pose aujourd'hui le physicien, cherchant à mettre en difficulté un domaine d'activité immense qu'il a contribué à créer. Mot(s) clés libre(s) : circuit intégré, codage de l'information, conductivité électrique, matériau semi-conducteur, microélectronique, miniaturisation, physique quantique des solides, silicium, transistor
|
Accéder à la ressource
|
|
Réalisation de Nanofils de silicium
/ Michèle MIENS
/ 01-01-2006
/ Canal-U - OAI Archive
Stievenard Didier
Voir le résumé
Voir le résumé
Réalisation de Nanofils de silicium par Lithographie AFM dans le cadre de TP nanotech Master micro et nanotechnologiesGénériqueavec la participation de François Vaurette (doctorant) Bernard Legrand (Chargé de recherches CNRS) Didier Stievenard (directeur de recherche CNRS) Réalisation, prises de vue, montage: Michèle Miens (assistante ingénieur CNRS) Centrale de Technologie IEMN CNRS-USTL-IEMN Mot(s) clés libre(s) : nanofil, silicium
|
Accéder à la ressource
|
|
Puces et biopuces
/ Mission 2000 en France
/ 07-09-2000
/ Canal-U - OAI Archive
MORENO Roland
Voir le résumé
Voir le résumé
La puce est un carré en silicium (seul matériau avec lequel on soit arrivé à faire des semiconducteurs), plus petit que l’ongle du petit doigt, avec de très nombreuses petites pattes qui font penser à une puce. On peut se faire une idée de la révolution qu’a introduit la puce, en consultant par exemple Internet, qui est de loin la manifestation la plus spectaculaire des possibilités. Il y a des microprocesseurs partout, c’est à dire l’intelligence ; il y a des mémoires. Je n’ai inventé que la carte à puces. Les biopuces sont une sorte de fantasme journalistique : il n’y en a pas qui fonctionne. Les grands de l’informatique comme Intel, Texas Instrument ne travaillent pas dessus. C’est trop différent des circuits intégrés.Il y a une différence spectaculaire entre mémoire informatique et mémoire humaine.Comment se fait-il qu’il est si difficile d’apprendre ? Qu’il soit impossible d’oublier sur commande ? Aujourd’hui j’ai une veste jaune, si demain vous voulez chasser cette image de votre mémoire, ça vous sera complètement impossible. Il n’y a pas d’intersection entre la volonté et la mémoire. La mémoire artificielle la plus simple : une feuille de papier, une vitre embuée sont des mémoires, au sens où l’on peut inscrire une information et elle reste. Toutes ces mémoires sont effaçables. Il suffit de frotter avec un chiffon et l’information s’évapore. Rien de tel n’est concevable avec notre mémoire. La mémoire humaine est infinie ; ce soir ayant déjà dans notre tête tout ce que nous avons, nous allons voir un film d’action, on sort avec le film dans la tête mais ça n’a pas chassé de précédent souvenir. Les mémoires artificielles sont finies, elles ont un espace délimité. Une cassette de magnétoscope, une fois remplie, ne peut prendre une seconde d’images supplémentaires. Sur cet étonnement, j’ai voulu créer une mémoire artificielle ayant les traits de fonctionnement de la mémoire humaine, son irréversibilité. Une information enregistrée est irréversiblement enregistrée. Les informaticiens adorent ce type de situation stable... Mot(s) clés libre(s) : carte à puce, circuit intégré, identification, information irréversible, mémoire informatique, microélectronique, microprocesseur, semi-conducteur, silicium
|
Accéder à la ressource
|
|
L’odyssée de la matière (par Jacques Livage)
/ Pascal CECCALDI, Lycée d’Etat Jean Zay - Internat de Paris
/ 04-03-2014
/ Canal-u.fr
LIVAGE Jacques
Voir le résumé
Voir le résumé
L’ODYSSÉE DE LA MATIÈREpar Jacques LIVAGEComment la matière divisée, puis condensée et organiséeest devenue vivante puis pensante ? L’aventure de la matière a commencé il y a près de 14 milliards d’années lorsque, quelques minutes après le big-bang, les premières particules élémentaires, les quarks, sont apparues. Au sein d’un univers en expansion, elle a conduit à la formation des atomes, des molécules, de la poussière interstellaire, puis des astres et des galaxies. Au cours de ce périple, la matière divisée des origines s’est progressivement condensée et complexifiée pour conduire à l’univers tel que nous le connaissons aujourd’hui. Certains processus ont été particulièrement rapides, les noyaux atomiques par exemple, se sont formés au cours des premières minutes, tandis que d’autres sont issus d’une longue maturation. Il a fallu attendre plus de 300.000 ans pour que se forment les premiers atomes et neuf milliards d’années pour que naisse la Terre. La longue histoire de la matière a conduit à la formation des roches minérales et des molécules organiques. Sur notre planète, elle a donné naissance à la matière vivante et même à la matière pensante. Comment la chimie, science de la matière, permet de décrire cette aventure ? C’est ce que nous allons tenter de montrer au cours de cet exposé. Pendant des siècles, on a pensé que la matière était constituée des quatre éléments d’Aristote, la terre, l’eau, l’air et le feu. Ce n’est qu’au XVIIIe siècle que l’on a montré que, comme le prédisait Démocrite, elle était formée d’atomes. Pendant plus d’un siècle, les chimistes se sont attachés à découvrir de nouveaux éléments. C’est ainsi qu’au cours de ses travaux sur la combustion, Lavoisier mit en évidence l’existence de l’oxygène mettant ainsi fin à la théorie du ‘phlogistique’ [1]. À la fin du XIXe siècle, avec l’établissement du tableau périodique des éléments, le chimiste disposait enfin des briques nécessaires pour transformer la matière. Deux éléments, le silicium et le carbone, vont nous permettre de comprendre comment s’est formée la matière. Le premier, le silicium, a conduit à la formation des roches. La silice et les silicates représentent 90% des minéraux de la croûte terrestre. Le second, le carbone a conduit aux molécules organiques qui ont donné naissance au vivant. Le secret de cette évolution réside dans l’auto-organisation. Les atomes ne sont pas indépendants les uns des autres. Ils s’attirent mutuellement via la liaison chimique et se lient dans l’espace selon des règles bien définies. Ainsi, selon Niels Bohr, les électrons gravitent autour du noyau en se répartissant sur des couches successives. Les électrons qui occupent la dernière couche, dite ‘couche de valence’, jouent un rôle privilégié car ils sont susceptibles d’interagir avec les atomes voisins pour former une liaison chimique. Le silicium, comme le carbone possèdent quatre électrons de valence ce qui les conduit à former quatre liaisons chimiques, d’où la tétravalence caractéristique de ces deux éléments. C’est ainsi que, dans les silicates, l’atome de silicium se lie à quatre atomes d’oxygène. Selon l’enchainement des tétraèdres [SiO4] on obtient des fibres d’amiante, des feuillets d’argile ou des cristaux de quartz. Dans tous les cas, l’enchainement peut se poursuivre à l’infini donnant des solides qui constituent l’essentiel des matériaux que nous utilisons pour élaborer des verres ou des céramiques. Le carbone a un comportement légèrement différent. Il est capable de former des doubles liaisons carbone-carbone. Cela limite le nombre de voisins auxquels il se lie. On passe ainsi du cristal de diamant dans lequel chaque atome de carbone est lié à quatre voisins aux feuillets de graphite dans lesquels il n’en a plus que trois. De nouvelles formes du carbone ont été mises en évidence au cours des dernières décennies ; graphène, nanotubes, fullerène... Toute la richesse de la chimie organique est liée à l’aptitude du carbone à former des doubles ou triples liaisons conduisant ainsi à la formation de molécules plutôt que de solides. C’est toute la richesse de la synthèse organique initiée par Marcelin Berthelot dans son ouvrage La chimie organique fondée sur la synthèse paru en 1860. L’homme enfin avait vaincu la ‘force vitale’ et devenait capable de transformer la matière et même d’en créer de nouvelles formes. Sera-t-il capable de recréer la vie ? C’est là le pari de la ‘biologie de synthèse’ qui a pour objet de synthétiser les molécules du vivant et de les associer pour former une protocellule, première forme de vie sur terre ![1] Terme savant forgé sur le grec phlogiston « inflammable » et phlox « flamme », pour désigner une hypothétique substance fluide qu’on croyait être constitutive de la chaleur et qui aurait expliqué le phénomène de la combustion. Terme savant forgé sur le grec phlogiston « inflammable » et phlox « flamme », pour désigner une hypothétique substance fluide qu’on croyait être constitutive de la chaleur et qui aurait expliqué le phénomène de la combustion. Mot(s) clés libre(s) : fullerène, tableau périodique des éléments, Mendeleïev, Marcelin Berthelot, carbone, oxygène, hydrogène, chimie douce, silicium, histoire de la matière
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|