|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Number-theoretic methods in quantum computing
/ INRIA (Institut national de recherche en informatique et automatique), CNRS - Centre National de la Recherche Scientifique, UNS, Région PACA
/ 28-04-2016
/ Canal-u.fr
SELINGER Peter
Voir le résumé
Voir le résumé
An important problem in quantum
computing is the so-called approximate synthesis problem: to find a
quantum circuit, preferably as short as possible, that approximates a
given unitary operator up to given epsilon. Moreover, the solution
should be computed by an efficient algorithm. For nearly two decades,
the standard solution to this problem was the Solovay-Kitaev algorithm,
which is based on geometric ideas. This algorithm produces circuits of
size O(log^c(1/epsilon)), where c is approximately 3.97.
It was a long-standing open problem
whether this exponent c could be reduced to 1. In this talk, I will
report on a number-theoretic algorithm that achieves circuit size
O(log(1/epsilon)) in the case of the so-called Clifford+T gate set,
thereby answering the above question positively.
In case the operator to be approximated
is diagonal, the algorithm satisfies an even stronger property: it
computes the optimal solution to the given approximation problem. The
algorithm also generalizes to certain other gate sets arising from
number-theoretic unitary groups. This is joint work with Neil J. Ross. Mot(s) clés libre(s) : Solovay-Kitaev algorithm
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|