|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Les matériaux moléculaires
/ UTLS - la suite, Mission 2000 en France
/ 27-08-2000
/ Canal-U - OAI Archive
VERDAGUER Michel
Voir le résumé
Voir le résumé
L' histoire de l'humanité est scandée par la nature des matériaux que l'homme est capable d'élaborer et d'utiliser pour répondre à ses besoins. Notre époque est marquée par une explosion de la création de nouveaux matériaux, de plus en plus conçus pour répondre à un besoin très précis. Dans ce contexte, les matériaux réalisés à partir de molécules peuvent faire valoir de nombreux avantages : ils sont le plus souvent de faible densité, transparents ou colorés à la demande, solubles, biocompatibles, faciles à mettre en forme, etc. La flexibilité de la chimie moléculaire permet de produire pratiquement " à la carte " de nouvelles molécules et de nouveaux édifices moléculaires en variant de manière de plus en plus subtile structures, structures électroniques et propriétés. Les synthèses sont guidées par les besoins en nouveaux matériaux de structure ou en matériaux fonctionnels. Notre vie quotidienne est ainsi entourée de matériaux moléculaires familiers qu'ils soient d'origine naturelle ou industrielle, créations de l'homme. L'exposé les identifie, illustre et commente quelques unes de leurs propriétés et leurs multiples domaines d'application. Dans le même temps, une recherche pluridisciplinaire se poursuit pour obtenir des matériaux présentant des propriétés inédites, voire des propriétés multiples au niveau macroscopique (grands ensembles de molécules) ou au niveau d'une seule molécule (électronique moléculaire, machines moléculaires
). Quelques aspects de ces recherches sont présentés, en mettant en évidence les principes fondamentaux sur lesquels repose la synthèse des molécules et des édifices moléculaires présentant des propriétés données, les techniques récentes qui permettent un progrès plus rapide en matière de matériaux moléculaires, les contraintes qui s'exercent sur la production de ces matériaux et les perspectives qui s'ouvrent dans un domaine où la riche complexité des matériaux biologiques constitue une matière première et un exemple, une source de réflexion et d'espoir permanents. Mot(s) clés libre(s) : biomatériau, chimie moléculaire, conductivité, électronique moléculaire, interaction intermoléculaire, liaison chimique covalente, ligand, magnétisme, matériau composite, matériau moléculaire, science des matériaux, spin, structure moléculaire
|
Accéder à la ressource
|
|
Qu'entend-on par nanotechnologies ?
/ UTLS - la suite
/ 06-12-2001
/ Canal-U - OAI Archive
VAN DAMME Henry
Voir le résumé
Voir le résumé
Que sont les Nanotechnologies ? Imaginez que l'on puisse fabriquer les matériaux, les objets et les dispositifs dont nous avons besoin avec autant de précision que la Nature lorsqu'elle construit une cellule, un organe ou un organisme : en choisissant chaque molécule qui entrera dans la construction de l'édifice, en choisissant la manière de les assembler, en choisissant la manière de construire et d'emboîter des niveaux de plus en plus complexes d'organisation. La nature même de ce que nous fabriquons en serait changée. Non pas que nous donnerions vie à nos créations, mais leurs caractéristiques et les fonctions que l'on pourrait en attendre seraient infiniment plus riches que celles que nous connaissons. Construire un matériau aussi solide et résistant au choc que la nacre, un actionneur qui serait un véritable muscle artificiel, un filtre aussi efficace et peu énergivore que le rein, un tissus dont les caractéristiques changeraient en fonction de la température et de l'humidité, des capsules moléculaires capables de délivrer un médicament sur une cible précise, un anticorps artificiel capable de détecter des cellules malignes et de les éliminer, un calculateur dont le coeur serait constitué de quelques molécules ou même d'une seule d'entre elles,... Nous sommes encore loin de la plupart de ces réalisations, mais la décennie qui vient de s'écouler a vu de tels progrès dans les deux éléments indispensables -la maîtrise du très petit et la maîtrise du complexe- que l'on peut raisonnablement espérer y arriver. On sait désormais, grâce aux microscopes à effet tunnel et à force atomique, non seulement « voir » les atomes, mais aussi les manipuler un par un, explorer tous les recoins d'une molécule ou encore la déformer pour étudier sa réaction, ou encore y accrocher un prolongement artificiel. On sait marier la chimie du carbone -celle des molécules et du monde vivant- avec la chimie du monde minéral. On connaît aussi de mieux en mieux la sociologie des molécules, les lois qui régissent la manière dont elles vont s'assembler entre elles pour former des entités plus grosses : des membranes, des capsules,... On a compris comment les propriétés d'un petit morceau de matière changent lorsque sa taille devient très petite et on en a tiré profit pour fabriquer de nouvelles briques pour la construction des matériaux. Les nanotechnologies constituent les différentes facettes de cette démarche, qui change fondamentalement notre rapport à la matière. Mot(s) clés libre(s) : magnétorésistance géante, microscopie à effet tunnel, moteur moléculaire, nanomatériau, nanomatériaux, nanorobot, nanotechnologie, nanotube, structure moléculaire
|
Accéder à la ressource
|
|
La chimie quantique
/ UTLS - la suite, Mission 2000 en France
/ 20-08-2000
/ Canal-U - OAI Archive
MALRIEU Jean-Paul
Voir le résumé
Voir le résumé
En évoquant d'abord les différentes périodes qui ont marqué le développement de cette discipline théorique, située à la charnière de la Physique et de la Chimie, on essayera de faire comprendre quels sont ses objets, et la spécificité de sa pratique. De fait, la Chimie Quantique a fourni à la fois des concepts cruciaux pour l'intelligibilité de phénomènes à l'échelle moléculaire, aidant même parfois les chimistes dans leur invention d'édifices nouveaux, et des outils de prédiction quantitative fiables des énergies et des structures de ces édifices. On essayera de montrer les défis qu'elle affronte aujourd'hui dans sa recherche de puissance (l'efficience simulatrice tuera-t-elle la théorie ?), sa synergie possible avec la Physique dans l'étude des matériaux, sa participation au design d'architectures moléculaires à propriétés électroniques remarquables, le développement des aspects temporels. On ne se privera pas de formuler quelques remarques d'ordres épistémologique, esthétique et sociologique. Mot(s) clés libre(s) : chimie quantique, électron, énergie cinétique, liaison chimique, liaison covalente, matière, orbitale moléculaire, physique atomique, simulation numérique, structure moléculaire, supraconductivité
|
Accéder à la ressource
|
|
Bactéries de l'extrême
/ Laurent MAGET, CNRS - Centre National de la Recherche Scientifique, IFREMER
/ 01-01-1997
/ Canal-U - OAI Archive
MAGET Laurent, PRIEUR Daniel, FOUQUET Yves
Voir le résumé
Voir le résumé
En 1969, Thomas Brock a montré par ses travaux que des micro-organismes peuvent vivre à des températures avoisinant et même dépassant 100 C. Ces bactéries thermophiles prolifèrent au voisinage des sources chaudes terrestres et sous-marines. Yves Fouquet, géologue à l'IFREMER, décrit les phénomènes tectoniques à l'origine des sources hydrothermales. Celles-ci sont très nombreuses en Islande du fait de l'activité volcanique de l'île et le docteur Jacob Kristjansson en étudie la microfaune. Daniel Prieur, microbiologiste au CNRS à la station biologique de Roscoff (Finistère), relate la mission Microsmoke (novembre et décembre 1995) qui a pu atteindre les fosses les plus profondes de l'Océan Atlantique (Fosse aux Serpents à 3500 m au-dessous du niveau de la mer) grâce au Nautile, engin d'exploration de l'IFREMER. Les sources chaudes sous-marines forment progressivement des cheminées poreuses à l'intérieur desquelles se développent les bactéries thermophiles. Grâce aux bras télécommandés du Nautile, les scientifiques peuvent prélever des échantillons de fluide hydrothermal et des morceaux de cheminées qui sont ensuite analysés en laboratoire. Les chercheurs ont ainsi constaté que ces micro-organismes ont développé des structures moléculaires très particulières pour leurs protéines et leurs acides nucléiques afin de résister aux pressions et températures élevées de leur environnement, ainsi que l'explique Patrick Forterre, microbiologiste à l'Université d'Orsay. Les bactéries thermophiles sont peut-être une des premières formes de vie apparues sur terre et leur résistance exceptionnelle permet aux chercheurs d'explorer les conditions extrêmes pour lesquelles la vie est encore possible.GénériqueAuteur - Réalisateur : MAGET Laurent Conseillers scientifiques : PRIEUR Daniel (Centre d'Etudes d'océanographie et de biologie marine, UPR CNRS, Roscoff et Univ. de Bretagne Occidentale), FORTERRE Patrick (Univ. Paris XI, Orsay) et FOUQUET Yves (IFREMER, Brest) Production : CNRS AV, IFREMER Mot(s) clés libre(s) : bactérie thermophile, biologie marine, geyser, haute température, micro-faune, micro-organisme, microbiologie, océanographie, soufrière, source chaude, structure moléculaire, Thomas Brock
|
Accéder à la ressource
|
|
Le relief de l'invisible: les céramiques
/ Science en Cours, Cité des Sciences et de l'Industrie, ALTO MEDIA, Aune Production, Ex-Nihilo
/ 01-01-1997
/ Canal-U - OAI Archive
LEVY Pierre-Oscar
Voir le résumé
Voir le résumé
GénériqueProduction : CO Prod CSI /Alto-média / ex-nihilo / Aune production DPA / Livrozet Maud Mot(s) clés libre(s) : alumine, céramique, microscope électronique, oxyde d'aluminium, science des matériaux, structure moléculaire
|
Accéder à la ressource
|
|
Formes et organisations en nanosciences : l'exemple de la Nature / Bruno Chaudret
/ Nathalie MICHAUD, Université Toulouse II-Le Mirail, Université Toulouse II-Le Mirail SCPAM
/ 09-12-2010
/ Canal-U - OAI Archive
CHAUDRET Bruno
Voir le résumé
Voir le résumé
Formes et organisations en nanosciences : l'exemple de la Nature / Bruno Chaudret. In "Images & mirages @ nanosciences", colloque international organisé par le Laboratoire Interdisciplinaire Solidarités, Sociétés, Territoires (LISST) de l'Université Toulouse II-Le Mirail, le Centre d'Élaboration de Matériaux et d'Études Structurales (CEMES) rattaché à l'Institut de Physique du CNRS et le Laboratoire de Physique et Chimie de Nano-Objets (LPCNO) de l'INSA Toulouse. Université Toulouse II-Le Mirail / La Fabrique Culturelle, 9-10 décembre 2010. Thématique 3 : Les modalités épistémiques et esthétiques des images, 9 décembre 2010. Comment faire croître des nano-objets aux formes bien définies à partir d’atomes ou de molécules ? Comment les organiser et les relier au monde macroscopique ? Ce sont les questions essentielles auxquelles la présentation de Bruno Chaudret essaie de proposer un début de réponse en prenant exemple de la Nature et de ses mécanismes de croissance. Les autres questions concernent l’intérêt d’une telle démarche que ce soit sur le plan cognitif, scientifique ou applicatif.> Communication suivie d'un débat avec le public. Mot(s) clés libre(s) : imagerie scientique (chimie), matériaux nanostructurés, nanosciences, structure moléculaire
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|