|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Les fondements des mathématiques
/ UTLS - la suite, Mission 2000 en France
/ 17-06-2000
/ Canal-U - OAI Archive
GIRARD Jean-Yves
Voir le résumé
Voir le résumé
"La "" crise des fondements "" s'ouvre en 1897 avec le paradoxe de Burali-Forti, une contradiction dans la toute jeune théorie des Ensembles. Parmi les solutions proposées, le "" Programme de Hilbert "" (~ 1925) accorde un rôle privilégié à la non-contradiction formelle. Le théorème d'incomplétude de Gödel (1931), qui réfute le programme de Hilbert, a fait le désespoir de tous ceux qui cherchaient une réponse définitive à leurs angoisses fondationnelles. Il a aussi gêné ceux qui cherchaient plus simplement à comprendre la nature des objets mathématiques. Ce n'est qu'avec le développement de l'informatique qu'ont pu se dégager de nouveaux axes de lecture, en rupture de plus en plus nette avec le réductionnisme Hilbertien. " Mot(s) clés libre(s) : analyse, arithmétique de Peano, diagonale de Cantor, expansivité, formalisme mathématique, Hilbert, intuitionnisme, langage informatique, paradoxe, Popperisme, récessivité, théorème de Gödel, théorie des ensembles
|
Accéder à la ressource
|
|
Les théorèmes de Gödel : fin d’un espoir ?
/ DCAM - Département Conception et Assistance Multimédia - Université Bordeaux Segalen, Service Culturel - Université Victor Segalen Bordeaux 2
/ 22-02-2006
/ Canal-U - OAI Archive
DESHOUILLERS Jean-Marc
Voir le résumé
Voir le résumé
En 1931, Kurt Gödel (1906 - 1978) démontrait, dans un article révolutionnaire, qu'un système d'axiomes cohérent et suffisamment expressif est susceptible de générer des énoncés dont la validité ne peut être démontrée dans le cadre des règles mêmes qui gouvernent la formulation de ces énoncés et leurs déductions. Apparemment très technique, ce théorème bouleversait la philosophie des mathématiques, et en particulier la vieille question de leur "fondement". Jean-Marc Deshouillers se propose ici de décrire l'avant et l'après Gödel en retraçant l'histoire des théories mathématiques depuis Aristote et Euclide jusqu'au renversement révolutionnaire des fondements mathématiques induit par le théorème d’incomplétude.La conférence a été donnée à l'Université Victor Segalen Bordeaux 2 dans le cadre du cycle de conférences "L'invité du Mercredi" / Saison 2005-2006 sur le thème "L'espoir". Service culturel Université Victor Segalen de Bordeaux 2 / DCAM / Mot(s) clés libre(s) : calculabilité, formalisation mathématique, intuitionnisme, philosophie des mathématiques, théorème de Gödel, théorème d’incomplétude, théorie des ensembles, théorie des groupes, théorie mathématique
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|