Nouveautés
Recherche simple :
Accueil
Documents
Pédagogie
Thèses
Publications Scientifiques
Multi-formats
Pédagogie > Recherche par auteurs en fr
  • Nouveautés
  • Recherche avancée
  • Recherche thématique UNIT
  • Recherche thématique
  • Recherche par établissements
  • Recherche par auteurs
  • Recherche par mots-clefs
Auteurs > B > BERTIN MARIE-JOSÉ
Niveau supérieur
  • 3 ressources ont été trouvées. Voici les résultats 1 à 3
  |< << Page précédente 1 Page suivante >> >| documents par page
Tri :   Date Editeur Auteur Titre

Marie-José Bertin - Des nombres de Salem à la mesure de Mahler de surfaces K3 (Part 1)

/ Fanny Bastien / 17-06-2013 / Canal-u.fr
Bertin Marie-José
Voir le résumé
Voir le résumé
Le récent article de McMullen « Dynamics with small entropy on projective K3 surfaces » éclaire d’un jour nouveau les nombres de Salem. Ces entiers algébriques gardent cependant tout leur mystère. On peut tous les obtenir grâce à la construction de Salem (Boyd (1977)) et cependant on ignore s’il en existe un inférieur à 1,1762... Après avoir rappelé la construction de Salem et le théorème de Boyd, on définira la mesure de Mahler logarithmique d’un polynôme de plusieurs variables. On prouvera que la mesure de Mahler d’un polynôme de deux variables est la limite d’une suite de mesures de Mahler de polynômes d’une variable (Boyd (1981)). On donnera des mesures explicites de mesures de Mahler de certaines classes de polynômes de 2 et 3 variables. En particulier dans le cas de 3 variables on présentera deux aspects de l’expression de cette mesure, un aspect arithmétique comme série L de Hecke d’un corps quadratique imaginaire et un aspect géométrique comme série L de la surface K3 définie par le polynôme qui s’exprime comme série L d’une forme modulaire de poids 3 à coefficients rationnels. Pour terminer, on évoquera des problèmes plus géométriques de fibrations elliptiques sur les surfaces K3 algébriques.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
 |  Accéder à la ressource

Marie-José Bertin - Des nombres de Salem à la mesure de Mahler de surfaces K3 (Part 3)

/ Fanny Bastien / 21-06-2013 / Canal-u.fr
Bertin Marie-José
Voir le résumé
Voir le résumé
Le récent article de McMullen « Dynamics with small entropy on projective K3 surfaces » éclaire d’un jour nouveau les nombres de Salem. Ces entiers algébriques gardent cependant tout leur mystère. On peut tous les obtenir grâce à la construction de Salem (Boyd (1977)) et cependant on ignore s’il en existe un inférieur à 1,1762... Après avoir rappelé la construction de Salem et le théorème de Boyd, on définira la mesure de Mahler logarithmique d’un polynôme de plusieurs variables. On prouvera que la mesure de Mahler d’un polynôme de deux variables est la limite d’une suite de mesures de Mahler de polynômes d’une variable (Boyd (1981)). On donnera des mesures explicites de mesures de Mahler de certaines classes de polynômes de 2 et 3 variables. En particulier dans le cas de 3 variables on présentera deux aspects de l’expression de cette mesure, un aspect arithmétique comme série L de Hecke d’un corps quadratique imaginaire et un aspect géométrique comme série L de la surface K3 définie par le polynôme qui s’exprime comme série L d’une forme modulaire de poids 3 à coefficients rationnels. Pour terminer, on évoquera des problèmes plus géométriques de fibrations elliptiques sur les surfaces K3 algébriques.
Mot(s) clés libre(s) : mathématiques, Grenoble, dynamics, institut fourier, summer school, number theory
 |  Accéder à la ressource

Marie-José Bertin - Des nombres de Salem à la mesure de Mahler de surfaces K3 (Part 4)

/ Fanny Bastien / 25-06-2013 / Canal-u.fr
Bertin Marie-José
Voir le résumé
Voir le résumé
Le récent article de McMullen « Dynamics with small entropy on projective K3 surfaces » éclaire d’un jour nouveau les nombres de Salem. Ces entiers algébriques gardent cependant tout leur mystère. On peut tous les obtenir grâce à la construction de Salem (Boyd (1977)) et cependant on ignore s’il en existe un inférieur à 1,1762... Après avoir rappelé la construction de Salem et le théorème de Boyd, on définira la mesure de Mahler logarithmique d’un polynôme de plusieurs variables. On prouvera que la mesure de Mahler d’un polynôme de deux variables est la limite d’une suite de mesures de Mahler de polynômes d’une variable (Boyd (1981)). On donnera des mesures explicites de mesures de Mahler de certaines classes de polynômes de 2 et 3 variables. En particulier dans le cas de 3 variables on présentera deux aspects de l’expression de cette mesure, un aspect arithmétique comme série L de Hecke d’un corps quadratique imaginaire et un aspect géométrique comme série L de la surface K3 définie par le polynôme qui s’exprime comme série L d’une forme modulaire de poids 3 à coefficients rationnels. Pour terminer, on évoquera des problèmes plus géométriques de fibrations elliptiques sur les surfaces K3 algébriques.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
 |  Accéder à la ressource

rss |< << Page précédente 1 Page suivante >> >| documents par page
© 2006-2010 ORI-OAI