|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
KEZAKO: Pourquoi la toile d'araignée est-elle si solide ?
/ Perrine Lefrileux
/ 15-04-2013
/ Canal-u.fr
BEAUGEOIS Maxime, Deltombe Damien, Hennequin Daniel
Voir le résumé
Voir le résumé
Kezako
est la série qui répond à vos questions de science. Cet épisode
traite de la toile d'araignée et de ses caractéristiques
facinantes: résistance, elasticité, …
Mot(s) clés libre(s) : toile, araignée, fil, elasticité, soie
|
Accéder à la ressource
|
|
Illusion d’ondes
/ Université de Nice Sophia Antipolis
/ 30-11-2009
/ Canal-U - OAI Archive
COULLET Pierre
Voir le résumé
Voir le résumé
Lundi 30/11/2009, Pierre Coullet : « Illusion d’ondes » dans le cadre des Lundis de la Connaissance et de l’exposition « Le Monde singulier d’Edmond Vernassa ». Mot(s) clés libre(s) : art concret, art plastique, chiralité, déformation de la matière, Edmond Vernassa, élasticité, flexion, hélice, impression de mouvement, points de tension, résistance des matériaux, spirale, torsion
|
Accéder à la ressource
|
|
La physique des pâtes
/ UTLS - la suite
/ 14-07-2005
/ Canal-U - OAI Archive
COUSSOT Philippe
Voir le résumé
Voir le résumé
On a l'habitude de classer la matière en solides, liquides ou gaz. Il existe cependant une classe de matériaux, les pâtes, dont le comportement mécanique et plus généralement les caractéristiques physiques sont en quelque sorte intermédiaires entre celles des liquides et des solides. Cette classe comprend des matériaux très divers : purées, compotes, sauces, yaourt, mousses, crèmes, gels, peintures, vernis, boues, ciment, colles, etc ; mais qui ont au moins un point commun : dans tous les cas il s'agit de fluides coincés, qui ne deviennent liquides que lorsqu'on leur fournit une énergie suffisante, et restent (ou redeviennent) solides si l'énergie fournie est trop faible. Cette propriété est ce qui fait l'intérêt principal de ces matériaux lors de leur utilisation (la mousse à raser reste sur le visage, bien avant de sécher la peinture appliquée sur un mur vertical ne coule plus, la boue argileuse conserve la forme qu'on lui a donnée en vue d'en faire une poterie, etc). En y regardant de plus près on se rend compte que cette transition solide-liquide se produit de manière relativement abrupte : une pâte n'est pas capable de couler à une vitesse modérée en régime permanent : soit elle coule vite, soit elle s'arrête. Ce phénomène conduit à une coexistence des phases liquide et solide dans la plupart des situations d'écoulement, et parfois à des évolutions catastrophiques. En outre des instabilités hydrodynamiques particulières (à vitesse nulle !) se développent avec ce type de matériaux : digitation lors de l'écartement de deux surfaces solides séparées par une fine couche de fluide ; goutte-à-goutte du ketchup ou de la mayonnaise sortant du tube ; compression simple (comme une éponge) ou craquelures lors du séchage ; vieillissement réversible au repos. Ces matériaux fascinants et complexes constituent un champ de recherche encore très ouvert. Une thermodynamique spécifique adaptée à ces fluides coincés peut elle être développée ? Quelles sont les origines microscopiques des comportements observés ? La réponse à ces questions fournira un cadre solide pour la formulation de matériaux industriels innovants (plus légers, plus robustes, contenant moins de produits nocifs, etc). Mot(s) clés libre(s) : boue, colloïde, comportement mécanique, déformation, écoulement, élasticité, instabilité hydrodynamique, magma, matériau granulaire, mécanique des fluides, milieux pâteux, mousse, pâte, polymère, rhéologie, science des matériaux, viscosité
|
Accéder à la ressource
|
|
Plastiques et élastomères
/ Mission 2000 en France
/ 11-10-2000
/ Canal-U - OAI Archive
GALLAS Gérard
Voir le résumé
Voir le résumé
En moins d'un siècle, les caoutchoucs et les matières plastiques ont envahi notre vie quotidienne. La grande élasticité des " élastomères " a rendu ces matériaux indispensables en mécanique, comme en transport d'énergie électrique ou en hygiène. Sans caoutchouc, plus d'automobiles, plus d'avions, plus de fusées, plus d'électroménager. Le caoutchouc est un matériau moderne et pourtant, sous sa forme naturelle, il existait en Amérique Centrale bien avant l'ère chrétienne. Apparus plus récemment, les " plastomères " ont bouleversé notre environnement, en remplaçant le bois, les métaux et les alliages légers dans de nombreuses applications : transports, bâtiment et travaux publics, emballages, articles ménagers, etc. Après avoir examiné ce qui fait l'originalité de cette grande famille des polymères, on examinera leurs caractéristiques principales et leurs procédés de transformation. Les principales applications seront décrites, depuis la conception des produits jusqu'à leur fin de vie et leur recyclage éventuel. La conclusion évoquera l'avenir à moyen terme de cette catégorie de matériaux, tant dans sa complexité que dans sa diversité. Mot(s) clés libre(s) : caoutchouc, élasticité, élastomère, plastique, plastomère, polymère, science des matériaux, vulcanisation
|
Accéder à la ressource
|
|
Physique et mécanique
/ UTLS - la suite
/ 06-07-2005
/ Canal-U - OAI Archive
ROUX Stéphane
Voir le résumé
Voir le résumé
Forte de sa maturité, la mécanique des solides n'en est que plus sollicitée par de nombreux défis à relever dans le futur. Les enjeux sont multiples : depuis la connaissance fondamentale, jusqu'à la conception et la caractérisation de nouveaux matériaux, en passant par la maîtrise de l'hétérogénéité de milieux à comportement complexe, en passant par l'exploitation de l'imagerie bi voire tridimensionnelle via l'analyse de champ, ou encore la prédiction de la variabilité ou de la fiabilité des solides et des structures. Dans toutes ces dimensions, physique et mécanique sont indissociablement liées, s'interpellant et dialoguant pour affronter plus efficacement ces challenges. Sur le plan expérimental, les mesures physiques, de plus en plus finement résolues spatialement, permettent d'aborder directement des réponses mécaniques inhomogènes, liées au désordre constitutif des matériaux ou à leur comportement non-linéaire dans des sollicitations complexes. Sur le plan de la modélisation numérique, l'ère du progrès purement algorithmique est sans doute révolu, pour laisser place à des approches performantes exploitant les problèmes multi échelles avec discernement. Enfin, en ce qui concerne la théorie, les progrès majeurs accomplis dans le passé dans l'homogénéisation des milieux élastiques permettent de mesurer les difficultés qui sous-tendent l'abord de l'hétérogénéité pour des lois de comportement complexes (plasticité, endommagement, et rupture, matériaux amorphes, milieux divisés ou enchevêtrés,
). Mot(s) clés libre(s) : contrainte, déformation, degré de liberté, élasticité, imagerie, loi de comportement, mécanique des milieux continus, mécanique du solide, milieu granulaire, non-linéarité, physique statistique, science des matériaux, tenseur
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
Page suivante >>
>|
|
documents par page
|
|