Nouveautés
Recherche simple :
Accueil
Documents
Pédagogie
Thèses
Publications Scientifiques
Multi-formats
Pédagogie > Recherche par mots-clefs en fr
  • Nouveautés
  • Recherche avancée
  • Recherche thématique UNIT
  • Recherche thématique
  • Recherche par établissements
  • Recherche par auteurs
  • Recherche par mots-clefs
Mots-clefs > G > geometric measure theory
Niveau supérieur
  • 40 ressources ont été trouvées. Voici les résultats 1 à 10
  |< << Page précédente 1 2 3 4 Page suivante >> >| documents par page
Tri :   Date Editeur Auteur Titre

Giovanni Alberti - Introduction to minimal surfaces and finite perimeter sets (Part 1)

/ Fanny Bastien / 15-06-2015 / Canal-u.fr
Alberti Giovanni
Voir le résumé
Voir le résumé
In these lectures I will first recall the basic notions and results that are needed to study minimal surfaces in the smooth setting (above all the area formula and the first variation of the area), give a short review of the main (classical) techniques for existence results, and then outline the theory of Finite Perimeter Sets, including the main results of the theory (compactness, structure of distributional derivative, rectifiability). If time allows, I will conclude with a few applications.  
Mot(s) clés libre(s) : Grenoble, école d'été, mathématique, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Giovanni Alberti - Introduction to minimal surfaces and finite perimeter sets (Part 5)

/ Fanny Bastien / 18-06-2015 / Canal-u.fr
Alberti Giovanni
Voir le résumé
Voir le résumé
In these lectures I will first recall the basic notions and results that are needed to study minimal surfaces in the smooth setting (above all the area formula and the first variation of the area), give a short review of the main (classical) techniques for existence results, and then outline the theory of Finite Perimeter Sets, including the main results of the theory (compactness, structure of distributional derivative, rectifiability). If time allows, I will conclude with a few applications.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Nicholas Alikakos - On the structure of phase transition maps : density estimates and applications

/ Fanny Bastien / 02-07-2015 / Canal-u.fr
Alikakos Nicholas
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Giovanni Alberti - Introduction to minimal surfaces and finite perimeter sets (Part 4)

/ Giovanni Alberti / 18-06-2015 / Canal-u.fr
Bastien Fanny
Voir le résumé
Voir le résumé
In these lectures I will first recall the basic notions and results that are needed to study minimal surfaces in the smooth setting (above all the area formula and the first variation of the area), give a short review of the main (classical) techniques for existence results, and then outline the theory of Finite Perimeter Sets, including the main results of the theory (compactness, structure of distributional derivative, rectifiability). If time allows, I will conclude with a few applications.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Andrea Braides - Geometric measure theory issues from discrete energies

/ Fanny Bastien / 29-06-2015 / Canal-u.fr
Braides Andrea
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Guy David - Minimal sets (Part 1)

/ Fanny Bastien / 23-06-2015 / Canal-u.fr
David Guy
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation, minimal sets
 |  Accéder à la ressource

Guy David - Minimal sets (Part 3)

/ Fanny Bastien / 24-06-2015 / Canal-u.fr
David Guy
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Camillo De Lellis - Center manifolds and regularity of area-minimizing currents (Part 2)

/ Fanny Bastien / 23-06-2015 / Canal-u.fr
De Lellis Camillo
Voir le résumé
Voir le résumé
A celebrated theorem of Almgren shows that every integer rectifiable current which minimizes (locally) the area is a smooth submanifold except for a singular set of codimension at most 2. Almgren’s theorem is sharp in codimension higher than 1, because holomorphic subvarieties of Cn are area-minimizing. In fact the typical singularity of a 2-dimensional area-minimizing current is modelled by branch points of holomorphic curves. These singularities are rather difficult to analyze because they might be very high order phenomena.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Camillo De Lellis - Center manifolds and regularity of area-minimizing currents (Part 5)

/ Fanny Bastien / 25-06-2015 / Canal-u.fr
De Lellis Camillo
Voir le résumé
Voir le résumé
A celebrated theorem of Almgren shows that every integer rectifiable current which minimizes (locally) the area is a smooth submanifold except for a singular set of codimension at most 2. Almgren’s theorem is sharp in codimension higher than 1, because holomorphic subvarieties of Cn are area-minimizing. In fact the typical singularity of a 2-dimensional area-minimizing current is modelled by branch points of holomorphic curves. These singularities are rather difficult to analyze because they might be very high order phenomena.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Joseph Fu - Integral geometric regularity (Part 1)

/ Fanny Bastien / 22-06-2015 / Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke in the 1930s, the famous Principal Kinematic Formula expresses the Euler characteristic of the intersection of two sufficiently regular objects in euclidean space, integrated over the space of all possible relative positions, in terms of geometric invariants associated to each of them individually. It is natural to wonder about the precise regularity needed  for this to work. The question turns on the existence of the normal cycle  of such an object A, i.e. an integral current that stands in for its manifolds of unit normals if A is too irregular for the latter to exist in a literal sense. Despite significant recent progress, a comprehensive understanding of this construction remains maddeningly elusive. In these lectures we will discuss both of these aspects.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

rss |< << Page précédente 1 2 3 4 Page suivante >> >| documents par page
© 2006-2010 ORI-OAI