Tri :
Date
Editeur
Auteur
Titre
|
|
Christiane Frougny - Systèmes de numération et automates (Part 1)
/ Fanny Bastien
/ 27-06-2013
/ Canal-u.fr
Frougny Christiane
Voir le résumé
Voir le résumé
Automates
finis et langages rationnels de mots finis • Automates finis et mots
infinis • Systèmes de numération à base réelle • Nombres de Pisot,
nombres de Parry et nombres de Perron • Systèmes de numération définis
par une suite Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory, automates, Systèmes de numération
|
Accéder à la ressource
|
|
Joseph Fu - Integral geometric regularity (Part 1)
/ Fanny Bastien
/ 22-06-2015
/ Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke
in the 1930s, the famous Principal Kinematic Formula expresses the Euler
characteristic of the intersection of two sufficiently regular objects
in euclidean space, integrated over the space of all possible relative
positions, in terms of geometric invariants associated to each of them
individually. It is natural to wonder about the precise regularity
needed for this to work. The question turns on the existence of the
normal cycle of such an object A, i.e. an integral current that stands
in for its manifolds of unit normals if A is too irregular for the
latter to exist in a literal sense. Despite significant recent progress,
a comprehensive understanding of this construction remains maddeningly
elusive. In these lectures we will discuss both of these aspects. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Joseph Fu - Integral geometric regularity (Part 2)
/ Fanny Bastien
/ 23-06-2015
/ Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke
in the 1930s, the famous Principal Kinematic Formula expresses the Euler
characteristic of the intersection of two sufficiently regular objects
in euclidean space, integrated over the space of all possible relative
positions, in terms of geometric invariants associated to each of them
individually. It is natural to wonder about the precise regularity
needed for this to work. The question turns on the existence of the
normal cycle of such an object A, i.e. an integral current that stands
in for its manifolds of unit normals if A is too irregular for the
latter to exist in a literal sense. Despite significant recent progress,
a comprehensive understanding of this construction remains maddeningly
elusive. In these lectures we will discuss both of these aspects. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Joseph Fu - Integral geometric regularity (Part 3)
/ Fanny Bastien
/ 24-06-2015
/ Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke
in the 1930s, the famous Principal Kinematic Formula expresses the Euler
characteristic of the intersection of two sufficiently regular objects
in euclidean space, integrated over the space of all possible relative
positions, in terms of geometric invariants associated to each of them
individually. It is natural to wonder about the precise regularity
needed for this to work. The question turns on the existence of the
normal cycle of such an object A, i.e. an integral current that stands
in for its manifolds of unit normals if A is too irregular for the
latter to exist in a literal sense. Despite significant recent progress,
a comprehensive understanding of this construction remains maddeningly
elusive. In these lectures we will discuss both of these aspects. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Joseph Fu - Integral geometric regularity (Part 4)
/ Fanny Bastien
/ 24-06-2015
/ Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke
in the 1930s, the famous Principal Kinematic Formula expresses the Euler
characteristic of the intersection of two sufficiently regular objects
in euclidean space, integrated over the space of all possible relative
positions, in terms of geometric invariants associated to each of them
individually. It is natural to wonder about the precise regularity
needed for this to work. The question turns on the existence of the
normal cycle of such an object A, i.e. an integral current that stands
in for its manifolds of unit normals if A is too irregular for the
latter to exist in a literal sense. Despite significant recent progress,
a comprehensive understanding of this construction remains maddeningly
elusive. In these lectures we will discuss both of these aspects. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Joseph Fu - Integral geometric regularity (Part 5)
/ Fanny Bastien
/ 24-06-2015
/ Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke
in the 1930s, the famous Principal Kinematic Formula expresses the Euler
characteristic of the intersection of two sufficiently regular objects
in euclidean space, integrated over the space of all possible relative
positions, in terms of geometric invariants associated to each of them
individually. It is natural to wonder about the precise regularity
needed for this to work. The question turns on the existence of the
normal cycle of such an object A, i.e. an integral current that stands
in for its manifolds of unit normals if A is too irregular for the
latter to exist in a literal sense. Despite significant recent progress,
a comprehensive understanding of this construction remains maddeningly
elusive. In these lectures we will discuss both of these aspects. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Herbert Gangl - Polylogs, MZVs and K-groups
/ Fanny Bastien
/ 15-01-2016
/ Canal-u.fr
Gangl Herbert
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : mathématiques, colloques, Grenoble (Isère), institut fourier
|
Accéder à la ressource
|
|
Christian Gérard - Introduction to field theory on curved spacetimes (Part 1)
/ Fanny Bastien
/ 20-06-2014
/ Canal-u.fr
Gérard Christian
Voir le résumé
Voir le résumé
The aim of these lectures is to give an introduction to quantum field theory on curved spacetimes, from the point of view of partial differential equations and microlocal analysis. I will concentrate on free fields and quasi-free states, and say very little on interacting fields or perturbative renormalization. I will start by describing the necessary algebraic background, namely CCR and CAR algebras, and the notion of quasi-free states, with their basic properties and characterizations. I will then introduce the notion of globally hyperbolic spacetimes, and its importance for classical field theory (advanced and retarded fundamental solutions, unique solvability of the Cauchy problem). Using these results I will explain the algebraic quantization of the two main examples of quantum fields ona manifold, namely the Klein-Gordon (bosonic) and Dirac (fermionic) fields.In the second part of the lectures I will discuss the important notion of Hadamardstates , which are substitutes in curved spacetimes for the vacuum state in Minkowskispacetime. I will explain its original motivation, related to the definition of therenormalized stress-energy tensor in a quantum field theory. I will then describethe modern characterization of Hadamard states, by the wavefront set of their twopointfunctions, and prove the famous Radzikowski theorem , using the Duistermaat-Hörmander notion of distinguished parametrices . If time allows, I will also describe the quantization of gauge fields, using as example the Maxwell field. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Alessandro Giacomini - Free discontinuity problems and Robin boundary conditions
/ 30-06-2015
/ Canal-u.fr
Giacomini Alessandro
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
La prostitution à Grenoble et en Dauphiné au XVIIIe siècle : territoires, sociabilités et pratiques / Anne Giraudeau
/ Franck DELPECH, SCPAM / Université Toulouse-Jean Jaurès-campus Mirail, Université Toulouse-Jean Jaurès-campus Mirail
/ 19-11-2014
/ Canal-u.fr
GIRAUDEAU Anne
Voir le résumé
Voir le résumé
La prostitution à Grenoble et en Dauphiné au XVIIIe siècle : territoires, sociabilités et pratiques / Anne Giraudeau. In journée d'étude "La prostitution urbaine en Europe du Moyen Âge à nos jours" organisée par le laboratoire France Méridionale et Espagne (FRAMESPA) à l'Université Toulouse-Jean Jaurès-campus Mirail, 19 novembre 2014.Considérée comme un problème sociétal, la prostitution est
périodiquement remise au cœur de l’actualité médiatique et législative.
Les recherches en sciences sociales autour de ces questions se sont
développées à partir des années 1970. Ces années ont vu les
mobilisations de prostitué.es avec l’occupation de l’église Saint-Nizier
en 1975 mais aussi la parution d’un livre majeur pour l’histoire de la
prostitution en France : Les Filles de noce d’Alain Corbin. Si
les publications sur les prostitutions vont sans cesse croissant, ce
n’est qu’à partir des années 2000 que de jeunes historiens et
historiennes, sensibles à l’histoire des femmes et du genre, se sont
emparés de la question et en ont considérablement renouvelé l’approche. "Prostituée" vient du latin prostituere
qui signifie « mettre devant, exposer au public » et son usage en
français est attesté depuis le XVIe siècle. L’invariant du terme de
prostituée ne doit pas cacher le parcours historique d’une notion qui,
entre le XVIe siècle et aujourd’hui, s’est considérablement modifiée. De
même, qu’il ne doit pas faire penser qu’il ait fallu attendre le XVIe
siècle pour que « le plus vieux métier du monde » se développe en
France. Couvrant une période qui va du Moyen Âge à nos jours, cette
journée d’étude est l’occasion de mettre en lumière
l’historicité de l’activité prostitutionnelle en abordant les
différentes étapes par lesquelles les prostitutions et leurs gestions
sont passées au fil des siècles en Europe. Mot(s) clés libre(s) : prostitution, france (18e siècle), Grenoble (Isère)
|
Accéder à la ressource
|
|