Tri :
Date
Editeur
Auteur
Titre
|
|
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 2)
/ Fanny Bastien
/ 03-07-2012
/ Canal-u.fr
Teleman Andrei
Voir le résumé
Voir le résumé
This
series of lectures is dedicated to recent results concerning the
existence of holomorphic curves on the surfaces of class VII. The first
lecture will be an introduction to the Donaldson theory. We will present
the fundamental notions and some important results in the theory,
explaining ideas of the proofs. In the second lecture we will present
the theory of holomorphic fiber bundles on complex surfaces, the
stability notion, moduli spaces and the Kobayashi-Hitschin
correspondence that links moduli spaces of stable fiber bundles (defined
in the fram of complex geometry) to moduli spaces of instantons
(defined in the frame of the Donaldson theory). In the last two lectures
we will prove the existence of holomorphic curves on minimal surfaces
of class VII with b2=1 or 2 and we will present the general strategy and
the last results obtained in the general case. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 1)
/ Fanny Bastien
/ 02-07-2012
/ Canal-u.fr
Teleman Andrei
Voir le résumé
Voir le résumé
This
series of lectures is dedicated to recent results concerning the
existence of holomorphic curves on the surfaces of class VII. The first
lecture will be an introduction to the Donaldson theory. We will present
the fundamental notions and some important results in the theory,
explaining ideas of the proofs. In the second lecture we will present
the theory of holomorphic fiber bundles on complex surfaces, the
stability notion, moduli spaces and the Kobayashi-Hitschin
correspondence that links moduli spaces of stable fiber bundles (defined
in the fram of complex geometry) to moduli spaces of instantons
(defined in the frame of the Donaldson theory). In the last two lectures
we will prove the existence of holomorphic curves on minimal surfaces
of class VII with b2=1 or 2 and we will present the general strategy and
the last results obtained in the general case. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 4)
/ Fanny Bastien
/ 27-06-2014
/ Canal-u.fr
Szeftel Jérémie
Voir le résumé
Voir le résumé
In order to control locally a space-‐time which satisfies the Einstein equations, what are the minimal assumptions one should make on its curvature tensor? The bounded L2 curvature conjecture roughly asserts that one should only need L2 bounds of the curvature tensor on a given space-‐like hypersurface. This conjecture has its roots in the remarkable developments of the last twenty years centered around the issue of optimal well-‐posedness for nonlinear wave equations. In this context, a corresponding conjecture for nonlinear wave equations cannot hold, unless the nonlinearity has a very special nonlinear structure. I will present the proof of this conjecture, which sheds light on the specific null structure of the Einstein equations. This is joint work with Sergiu Klainerman and Igor Rodnianski. These lectures will start from scratch and require no specific background. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 1)
/ Fanny Bastien
/ 26-06-2014
/ Canal-u.fr
Szeftel Jérémie
Voir le résumé
Voir le résumé
In order to control locally a space time which satisfies the Einstein equations, what are the minimal assumptions one should make on its curvature tensor? The bounded L2 curvature conjecture roughly asserts that one should only need L2 bounds of the curvature tensor on a given space like hypersurface. This conjecture has its roots in the remarkable developments of the last twenty years centered around the issue of optimal well posedness for nonlinear wave equations. In this context, a corresponding conjecture for nonlinear wave equations cannot hold, unless the nonlinearity has a very special nonlinear structure. I will present the proof of this conjecture, which sheds light on the specific null structure of the Einstein equations. This is joint work with Sergiu Klainerman and Igor Rodnianski. These lectures will start from scratch and require no specific background. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Jérémie Szeftel - General relativity (Workshop)
/ Fanny Bastien
/ 01-07-2014
/ Canal-u.fr
Szeftel Jérémie
Voir le résumé
Voir le résumé
In order to control locally a space time which satisfies the Einstein equations, what are the minimal assumptions one should make on its curvature tensor? The bounded L2 curvature conjecture roughly asserts that one should only need L2 bounds of the curvature tensor on a given space like hypersurface. This conjecture has its roots in the remarkable developments of the last twenty years centered around the issue of optimal well posedness for nonlinear wave equations. In this context, a corresponding conjecture for nonlinear wave equations cannot hold, unless the nonlinearity has a very special nonlinear structure. I will present the proof of this conjecture, which sheds light on the specific null structure of the Einstein equations. This is joint work with Sergiu Klainerman and Igor Rodnianski. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Alexandre Sukhov - J-complex curves: some applications (Part 4)
/ Fanny Bastien
/ 28-06-2012
/ Canal-u.fr
Sukhov Alexandre
Voir le résumé
Voir le résumé
We
will focus in our lectures on the following : 1. J-complex discs in
almost complex manifolds : general properties. Linearization and
compactness. Gromov’s method : the Fredholm alternative for the d-bar
operator. Attaching a complex disc to a Lagrangian manifold.
Application : exotic symplectic structures. Hulls of totally real
manifolds : Alexander’s theorem. 2. Real surfaces in (almost) complex
surfaces. Filling real 2-spheres by a Levi-flat hypersurface (Bedford
-Gaveau-Gromov theorem). Some applications. Symplectic and contact
structures. Reeb foliation and the Weinsten conjecture. Hofer’s proof of
the Weinstein conjecture. 3. J-complex lines and hyperbolicity. The KAM
theory and Moser’s stability theorem for entire J-complex curves in
tori. Global deformation and Bangert’s theorem. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Alexandre Sukhov - J-complex curves: some applications (Part 3)
/ Fanny Bastien
/ 27-06-2012
/ Canal-u.fr
Sukhov Alexandre
Voir le résumé
Voir le résumé
We
will focus in our lectures on the following : 1. J-complex discs in
almost complex manifolds : general properties. Linearization and
compactness. Gromov’s method : the Fredholm alternative for the d-bar
operator. Attaching a complex disc to a Lagrangian manifold.
Application : exotic symplectic structures. Hulls of totally real
manifolds : Alexander’s theorem. 2. Real surfaces in (almost) complex
surfaces. Filling real 2-spheres by a Levi-flat hypersurface (Bedford
-Gaveau-Gromov theorem). Some applications. Symplectic and contact
structures. Reeb foliation and the Weinsten conjecture. Hofer’s proof of
the Weinstein conjecture. 3. J-complex lines and hyperbolicity. The KAM
theory and Moser’s stability theorem for entire J-complex curves in
tori. Global deformation and Bangert’s theorem. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Alexander Strohmaier - Workshop
/ Fanny Bastien
/ 03-07-2014
/ Canal-u.fr
Strohmaier Alexander
Voir le résumé
Voir le résumé
I will explain how one can formulate and formalize the Gupta Bleuler framework for the Quantization of the electromagnetic field in an algebraic manner so that it works on globally hyperbolic space times. I will then discuss a construction of physical representations that works without the "spectral gap assumption" in the case of absense of zero energy resonances. These can be excluded by topologocial restrictions at infinity. This is based on joint work with Felix Finster. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Mark Pollicott - Dynamical Zeta functions (Part 1)
/ Fanny Bastien
/ 24-06-2013
/ Canal-u.fr
Pollicott Mark
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Aaron Pixton - The stable pairs equivariant descendent vertex
/ Fanny Bastien
/ 05-07-2011
/ Canal-u.fr
Pixton Aaron
Voir le résumé
Voir le résumé
The counting function associated to the moduli space of stable pairs on a 3-fold
X
is conjectured to give the Laurent expansion of a rational function. For toric
X
, this conjecture can
be proven by a careful grouping of the box con gurations appearing in the stable pairs equivariant
descendent vertex. I will describe this approach and then say a little about how it might also be used
to study the Donaldson{Thomas vertex. This talk presents joint work with Rahul Pandharipande. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, courbes, summer school, Gromov-Witten, isntitut fourier
|
Accéder à la ressource
|
|