Nouveautés
Recherche simple :
Accueil
Documents
Pédagogie
Thèses
Publications Scientifiques
Multi-formats
Pédagogie > Recherche par mots-clefs en fr
  • Nouveautés
  • Recherche avancée
  • Recherche thématique UNIT
  • Recherche thématique
  • Recherche par établissements
  • Recherche par auteurs
  • Recherche par mots-clefs
Mots-clefs > S > summer school
Niveau supérieur
  • 140 ressources ont été trouvées. Voici les résultats 81 à 90
  |< << Page précédente 4 5 6 7 8 9 10 11 12 13 14 Page suivante >> >| documents par page
Tri :   Date Editeur Auteur Titre

Semyon Dyatlov - Spectral gaps for normally hyperbolic trapping

/ Fanny Bastien / 30-06-2014 / Canal-u.fr
Dyatlov Semyon
Voir le résumé
Voir le résumé
Motivated by wave decay for Kerr and Kerr de Sitter black holes, we study spectral gaps for codimension 2 normally hyperbolic trapped sets with smooth stable/unstable foliations. Using semiclassical defect measures, we recover the gap of Wunsch Zworski and Nonnenmacher Zworski in our case. Under the stronger assumptions of r normal hyperbolicity and pinching, we discover further spectral gaps, meaning that resonances are stratified into bands by decay rates.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
 |  Accéder à la ressource

Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 1)

/ Fanny Bastien / 19-06-2012 / Canal-u.fr
Forstnerič Franc
Voir le résumé
Voir le résumé
A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also exist plenty of global foliations of this form, so long as there are no topological obstructions. More precisely, if then any -tuple of pointwise linearly independent (1,0)-forms can be continuously deformed to a -tuple of differentials where is a holomorphic submersion of to . Such a submersion always exists if is no more than the integer part of . More generally, if is a complex vector subbundle of the tangent bundle such that is a flat bundle, then is homotopic (through complex vector subbundles of ) to an integrable subbundle, i.e., to the tangent bundle of a nonsingular holomorphic foliation on . I will prove these results and discuss open problems, the most interesting one of them being related to a conjecture of Bogomolov.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, courbes, institut fourier, summer school, feuilletages, holomorphic foliations
 |  Accéder à la ressource

Christiane Frougny - Systèmes de numération et automates (Part 1)

/ Fanny Bastien / 27-06-2013 / Canal-u.fr
Frougny Christiane
Voir le résumé
Voir le résumé
Automates finis et langages rationnels de mots finis • Automates finis et mots infinis • Systèmes de numération à base réelle • Nombres de Pisot, nombres de Parry et nombres de Perron • Systèmes de numération définis par une suite
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory, automates, Systèmes de numération
 |  Accéder à la ressource

Joseph Fu - Integral geometric regularity (Part 1)

/ Fanny Bastien / 22-06-2015 / Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke in the 1930s, the famous Principal Kinematic Formula expresses the Euler characteristic of the intersection of two sufficiently regular objects in euclidean space, integrated over the space of all possible relative positions, in terms of geometric invariants associated to each of them individually. It is natural to wonder about the precise regularity needed  for this to work. The question turns on the existence of the normal cycle  of such an object A, i.e. an integral current that stands in for its manifolds of unit normals if A is too irregular for the latter to exist in a literal sense. Despite significant recent progress, a comprehensive understanding of this construction remains maddeningly elusive. In these lectures we will discuss both of these aspects.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Joseph Fu - Integral geometric regularity (Part 2)

/ Fanny Bastien / 23-06-2015 / Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke in the 1930s, the famous Principal Kinematic Formula expresses the Euler characteristic of the intersection of two sufficiently regular objects in euclidean space, integrated over the space of all possible relative positions, in terms of geometric invariants associated to each of them individually. It is natural to wonder about the precise regularity needed  for this to work. The question turns on the existence of the normal cycle  of such an object A, i.e. an integral current that stands in for its manifolds of unit normals if A is too irregular for the latter to exist in a literal sense. Despite significant recent progress, a comprehensive understanding of this construction remains maddeningly elusive. In these lectures we will discuss both of these aspects.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Joseph Fu - Integral geometric regularity (Part 3)

/ Fanny Bastien / 24-06-2015 / Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke in the 1930s, the famous Principal Kinematic Formula expresses the Euler characteristic of the intersection of two sufficiently regular objects in euclidean space, integrated over the space of all possible relative positions, in terms of geometric invariants associated to each of them individually. It is natural to wonder about the precise regularity needed  for this to work. The question turns on the existence of the normal cycle  of such an object A, i.e. an integral current that stands in for its manifolds of unit normals if A is too irregular for the latter to exist in a literal sense. Despite significant recent progress, a comprehensive understanding of this construction remains maddeningly elusive. In these lectures we will discuss both of these aspects.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Joseph Fu - Integral geometric regularity (Part 4)

/ Fanny Bastien / 24-06-2015 / Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke in the 1930s, the famous Principal Kinematic Formula expresses the Euler characteristic of the intersection of two sufficiently regular objects in euclidean space, integrated over the space of all possible relative positions, in terms of geometric invariants associated to each of them individually. It is natural to wonder about the precise regularity needed  for this to work. The question turns on the existence of the normal cycle  of such an object A, i.e. an integral current that stands in for its manifolds of unit normals if A is too irregular for the latter to exist in a literal sense. Despite significant recent progress, a comprehensive understanding of this construction remains maddeningly elusive. In these lectures we will discuss both of these aspects.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Joseph Fu - Integral geometric regularity (Part 5)

/ Fanny Bastien / 24-06-2015 / Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke in the 1930s, the famous Principal Kinematic Formula expresses the Euler characteristic of the intersection of two sufficiently regular objects in euclidean space, integrated over the space of all possible relative positions, in terms of geometric invariants associated to each of them individually. It is natural to wonder about the precise regularity needed  for this to work. The question turns on the existence of the normal cycle  of such an object A, i.e. an integral current that stands in for its manifolds of unit normals if A is too irregular for the latter to exist in a literal sense. Despite significant recent progress, a comprehensive understanding of this construction remains maddeningly elusive. In these lectures we will discuss both of these aspects.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Christian Gérard - Introduction to field theory on curved spacetimes (Part 1)

/ Fanny Bastien / 20-06-2014 / Canal-u.fr
Gérard Christian
Voir le résumé
Voir le résumé
The aim of these lectures is to give an introduction to quantum field theory on curved spacetimes, from the point of view of partial differential equations and microlocal analysis. I will concentrate on free fields and quasi-free states, and say very little on interacting fields or perturbative renormalization. I will start by describing the necessary algebraic background, namely CCR and CAR algebras, and the notion of quasi-free states, with their basic properties and characterizations. I will then introduce the notion of globally hyperbolic spacetimes, and its importance for classical field theory (advanced and retarded fundamental solutions, unique solvability of the Cauchy problem). Using these results I will explain the algebraic quantization of the two main examples of quantum fields ona manifold, namely the Klein-Gordon (bosonic) and Dirac (fermionic) fields.In the second part of the lectures I will discuss the important notion of Hadamardstates , which are substitutes in curved spacetimes for the vacuum state  in Minkowskispacetime. I will explain its original motivation, related to the definition of therenormalized stress-energy tensor in a quantum field theory. I will then describethe modern characterization of Hadamard states, by the wavefront set of their twopointfunctions, and prove the famous Radzikowski theorem , using the Duistermaat-Hörmander notion of distinguished parametrices . If time allows, I will also describe the quantization of gauge fields, using as example the Maxwell field.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
 |  Accéder à la ressource

Alessandro Giacomini - Free discontinuity problems and Robin boundary conditions

/ 30-06-2015 / Canal-u.fr
Giacomini Alessandro
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

rss |< << Page précédente 4 5 6 7 8 9 10 11 12 13 14 Page suivante >> >| documents par page
© 2006-2010 ORI-OAI