Nouveautés
Recherche simple :
Accueil
Documents
Pédagogie
Thèses
Publications Scientifiques
Multi-formats
Pédagogie > Recherche par mots-clefs en fr
  • Nouveautés
  • Recherche avancée
  • Recherche thématique UNIT
  • Recherche thématique
  • Recherche par établissements
  • Recherche par auteurs
  • Recherche par mots-clefs
Mots-clefs > G > Grenoble
Niveau supérieur
  • 164 ressources ont été trouvées. Voici les résultats 1 à 10
  |< << Page précédente 1 2 3 4 5 6 Page suivante >> >| documents par page
Tri :   Date Editeur Auteur Titre

Les enjeux de la numérisation pour le média radio : le cas des radios associatives de Grenoble

/ Canal-u.fr
Voir le résumé
Voir le résumé
Intervention de Maria HOLUBOWICZ : Maître de conférences au Gresec, Université Stendhal Grenoble 3.Le 5 mai 2015 à l'Institut de la Communication et des Médias (Université Stendhal Grenoble 3). Communication au colloque international "La communication numérique au cœur des sociétés : dispositifs, logiques de développement et pratiques".
Mot(s) clés libre(s) : Numérique - Communication - Information - Médias - Numérisation - radio associative - Grenoble
 |  Accéder à la ressource

Giovanni Alberti - Introduction to minimal surfaces and finite perimeter sets (Part 1)

/ Fanny Bastien / 15-06-2015 / Canal-u.fr
Alberti Giovanni
Voir le résumé
Voir le résumé
In these lectures I will first recall the basic notions and results that are needed to study minimal surfaces in the smooth setting (above all the area formula and the first variation of the area), give a short review of the main (classical) techniques for existence results, and then outline the theory of Finite Perimeter Sets, including the main results of the theory (compactness, structure of distributional derivative, rectifiability). If time allows, I will conclude with a few applications.  
Mot(s) clés libre(s) : Grenoble, école d'été, mathématique, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Giovanni Alberti - Introduction to minimal surfaces and finite perimeter sets (Part 5)

/ Fanny Bastien / 18-06-2015 / Canal-u.fr
Alberti Giovanni
Voir le résumé
Voir le résumé
In these lectures I will first recall the basic notions and results that are needed to study minimal surfaces in the smooth setting (above all the area formula and the first variation of the area), give a short review of the main (classical) techniques for existence results, and then outline the theory of Finite Perimeter Sets, including the main results of the theory (compactness, structure of distributional derivative, rectifiability). If time allows, I will conclude with a few applications.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Nicholas Alikakos - On the structure of phase transition maps : density estimates and applications

/ Fanny Bastien / 02-07-2015 / Canal-u.fr
Alikakos Nicholas
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

B. Allombert et Karim Belabas - Start of Atelier : setting up personnal computers

/ Fanny Bastien / 11-01-2016 / Canal-u.fr
Allombert Bill, Belabas Karim
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : colloques, mathématique, Grenoble (Isère), institut fourier, start
 |  Accéder à la ressource

Bill Allombert - Parallel PARI with GP2C

/ Fanny Bastien / 12-01-2016 / Canal-u.fr
Allombert Bill
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : mathématiques, colloques, Grenoble (Isère), institut fourier
 |  Accéder à la ressource

Lars Andersson - Geometry and analysis in black hole spacetimes (Part 1)

/ Fanny Bastien / 16-06-2014 / Canal-u.fr
Andersson Lars
Voir le résumé
Voir le résumé
Black holes play a central role in general relativity and astrophysics. The problem of proving the dynamical stability of the Kerr black hole spacetime, which is describes a rotating black hole in vacuum, is one of the most important open problems in general relativity. Following a brief introduction to the evolution problem for the Einstein equations, I will give some background on geometry of the Kerr spacetime. The analysis of fields on the exterior of the Kerr black hole serve as important model problems for the black hole stability problem. I will discuss some of the difficulties one encounters in analyzing waves in the Kerr exterior and how they can be overcome. A fundamentally important as pect of geometry and analysis in the Kerr spacetime is the fact that it is algebraically special, of Petrov type D, and therefore admits a Killing spinor of valence 2. I will introduce the 2 spinor and related formalisms which can be used to see how this structure leads to the Carter constant and the Teukolsky system. If there is time, I will discuss in this context some new conservation laws for fields of non zero spin.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
 |  Accéder à la ressource

Lars Andersson - Geometry and analysis in black hole spacetimes (Part 2)

/ Fanny Bastien / 17-06-2014 / Canal-u.fr
Andersson Lars
Voir le résumé
Voir le résumé
Black holes play a central role in general relativity and astrophysics. The problem of proving the dynamical stability of the Kerr black hole spacetime, which is describes a rotating black hole in vacuum, is one of the most important open problems in general relativity. Following a brief introduction to the evolution problem for the Einstein equations, I will give some background on geometry of the Kerr spacetime. The analysis of fields on the exterior of the Kerr black hole serve as important model problems for the black hole stability problem. I will discuss some of the difficulties one encounters in analyzing waves in the Kerr exterior and how they can be overcome. A fundamentally important as pect of geometry and analysis in the Kerr spacetime is the fact that it is algebraically special, of Petrov type D, and therefore admits a Killing spinor of valence 2. I will introduce the 2 spinor and related formalisms which can be used to see how this structure leads to the Carter constant and the Teukolsky system. If there is time, I will discuss in this context some new conservation laws for fields of non zero spin.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
 |  Accéder à la ressource

Lars Andersson - Geometry and analysis in black hole spacetimes (Part 3)

/ 18-06-2014 / Canal-u.fr
Andersson Lars
Voir le résumé
Voir le résumé
Black holes play a central role in general relativity and astrophysics. The problem of proving the dynamical stability of the Kerr black hole spacetime, which is describes a rotating black hole in vacuum, is one of the most important open problems in general relativity. Following a brief introduction to the evolution problem for the Einstein equations, I will give some background on geometry of the Kerr spacetime. The analysis of fields on the exterior of the Kerr black hole serve as important model problems for the black hole stability problem. I will discuss some of the difficulties one encounters in analyzing waves in the Kerr exterior and how they can be overcome. A fundamentally important as pect of geometry and analysis in the Kerr spacetime is the fact that it is algebraically special, of Petrov type D, and therefore admits a Killing spinor of valence 2. I will introduce the 2 spinor and related formalisms which can be used to see how this structure leads to the Carter constant and the Teukolsky system. If there is time, I will discuss in this context some new conservation laws for fields of non zero spin.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
 |  Accéder à la ressource

Lars Andersson - Symmetry operators and energies

/ 02-07-2014 / Canal-u.fr
Andersson Lars
Voir le résumé
Voir le résumé
Black holes play a central role in general relativity and astrophysics. The problem of proving the dynamical stability of the Kerr black hole spacetime, which is describes a rotating black hole in vacuum, is one of the most important open problems in general relativity. Following a brief introduction to the evolution problem for the Einstein equations, I will give some background on geometry of the Kerr spacetime. The analysis of fields on the exterior of the Kerr black hole serve as important model problems for the black hole stability problem. I will discuss some of the difficulties one encounters in analyzing waves in the Kerr exterior and how they can be overcome. A fundamentally important as pect of geometry and analysis in the Kerr spacetime is the fact that it is algebraically special, of Petrov type D, and therefore admits a Killing spinor of valence 2. I will introduce the 2 spinor and related formalisms which can be used to see how this structure leads to the Carter constant and the Teukolsky system. If there is time, I will discuss in this context some new conservation laws for fields of non zero spin.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
 |  Accéder à la ressource

rss |< << Page précédente 1 2 3 4 5 6 Page suivante >> >| documents par page
© 2006-2010 ORI-OAI