Tri :
Date
Editeur
Auteur
Titre
|
|
Tatiana Toro - Geometry of measures and applications (Part 1)
/ Fanny Bastien
/ 16-06-2015
/ Canal-u.fr
Toro Tatiana
Voir le résumé
Voir le résumé
In the 1920's Besicovitch studied
linearly measurable sets in the plane, that is sets with locally finite
"length". The basic question he addressed was whether the infinitesimal
properties of the "length" of a set E in the plane yield geometric
information on E itself. This simple question marks the beginning of the
study of the geometry of measures and the associated field known as
Geometric Measure Theory (GMT).
In
this series of lectures we will present some of the main results in the
area concerning the regularity of the support of a measure in terms of
the behavior of its density or in terms of its tangent structure. We
will discuss applications to PDEs, free boundary regularity problem and
harmonic analysis. The aim is that the GMT component of the mini-course
will be self contained. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 5)
/ Fanny Bastien
/ 18-06-2015
/ Canal-u.fr
Tonegawa Yoshihiro
Voir le résumé
Voir le résumé
The course covers two separate
but closely related topics. The first topic is the mean curvature flow
in the framework of GMT due to Brakke. It is a flow of varifold moving
by the generalized mean curvature. Starting from a quick review on the
necessary tools and facts from GMT and the definition of the Brakke mean
curvature flow, I will give an overview on the proof of the local
regularity theorem. The second topic is the reaction-diffusion
approximation of phase boundaries with key words such as the
Modica-Mortola functional and the Allen-Cahn equation. Their singular
perturbation problems are related to objects such as minimal surfaces
and mean curvature flows in the framework of GMT. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 4)
/ Fanny Bastien
/ 17-06-2015
/ Canal-u.fr
Tonegawa Yoshihiro
Voir le résumé
Voir le résumé
The course covers two separate
but closely related topics. The first topic is the mean curvature flow
in the framework of GMT due to Brakke. It is a flow of varifold moving
by the generalized mean curvature. Starting from a quick review on the
necessary tools and facts from GMT and the definition of the Brakke mean
curvature flow, I will give an overview on the proof of the local
regularity theorem. The second topic is the reaction-diffusion
approximation of phase boundaries with key words such as the
Modica-Mortola functional and the Allen-Cahn equation. Their singular
perturbation problems are related to objects such as minimal surfaces
and mean curvature flows in the framework of GMT. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 3)
/ Fanny Bastien
/ 17-06-2015
/ Canal-u.fr
Tonegawa Yoshihiro
Voir le résumé
Voir le résumé
The course covers two separate
but closely related topics. The first topic is the mean curvature flow
in the framework of GMT due to Brakke. It is a flow of varifold moving
by the generalized mean curvature. Starting from a quick review on the
necessary tools and facts from GMT and the definition of the Brakke mean
curvature flow, I will give an overview on the proof of the local
regularity theorem. The second topic is the reaction-diffusion
approximation of phase boundaries with key words such as the
Modica-Mortola functional and the Allen-Cahn equation. Their singular
perturbation problems are related to objects such as minimal surfaces
and mean curvature flows in the framework of GMT. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 2)
/ Fanny Bastien
/ 16-06-2015
/ Canal-u.fr
Tonegawa Yoshihiro
Voir le résumé
Voir le résumé
The course covers two separate
but closely related topics. The first topic is the mean curvature flow
in the framework of GMT due to Brakke. It is a flow of varifold moving
by the generalized mean curvature. Starting from a quick review on the
necessary tools and facts from GMT and the definition of the Brakke mean
curvature flow, I will give an overview on the proof of the local
regularity theorem. The second topic is the reaction-diffusion
approximation of phase boundaries with key words such as the
Modica-Mortola functional and the Allen-Cahn equation. Their singular
perturbation problems are related to objects such as minimal surfaces
and mean curvature flows in the framework of GMT. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 1)
/ Fanny Bastien
/ 15-06-2015
/ Canal-u.fr
Tonegawa Yoshihiro
Voir le résumé
Voir le résumé
The course covers two separate
but closely related topics. The first topic is the mean curvature flow
in the framework of GMT due to Brakke. It is a flow of varifold moving
by the generalized mean curvature. Starting from a quick review on the
necessary tools and facts from GMT and the definition of the Brakke mean
curvature flow, I will give an overview on the proof of the local
regularity theorem. The second topic is the reaction-diffusion
approximation of phase boundaries with key words such as the
Modica-Mortola functional and the Allen-Cahn equation. Their singular
perturbation problems are related to objects such as minimal surfaces
and mean curvature flows in the framework of GMT. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 2)
/ Fanny Bastien
/ 03-07-2012
/ Canal-u.fr
Teleman Andrei
Voir le résumé
Voir le résumé
This
series of lectures is dedicated to recent results concerning the
existence of holomorphic curves on the surfaces of class VII. The first
lecture will be an introduction to the Donaldson theory. We will present
the fundamental notions and some important results in the theory,
explaining ideas of the proofs. In the second lecture we will present
the theory of holomorphic fiber bundles on complex surfaces, the
stability notion, moduli spaces and the Kobayashi-Hitschin
correspondence that links moduli spaces of stable fiber bundles (defined
in the fram of complex geometry) to moduli spaces of instantons
(defined in the frame of the Donaldson theory). In the last two lectures
we will prove the existence of holomorphic curves on minimal surfaces
of class VII with b2=1 or 2 and we will present the general strategy and
the last results obtained in the general case. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 1)
/ Fanny Bastien
/ 02-07-2012
/ Canal-u.fr
Teleman Andrei
Voir le résumé
Voir le résumé
This
series of lectures is dedicated to recent results concerning the
existence of holomorphic curves on the surfaces of class VII. The first
lecture will be an introduction to the Donaldson theory. We will present
the fundamental notions and some important results in the theory,
explaining ideas of the proofs. In the second lecture we will present
the theory of holomorphic fiber bundles on complex surfaces, the
stability notion, moduli spaces and the Kobayashi-Hitschin
correspondence that links moduli spaces of stable fiber bundles (defined
in the fram of complex geometry) to moduli spaces of instantons
(defined in the frame of the Donaldson theory). In the last two lectures
we will prove the existence of holomorphic curves on minimal surfaces
of class VII with b2=1 or 2 and we will present the general strategy and
the last results obtained in the general case. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 4)
/ Fanny Bastien
/ 27-06-2014
/ Canal-u.fr
Szeftel Jérémie
Voir le résumé
Voir le résumé
In order to control locally a space-‐time which satisfies the Einstein equations, what are the minimal assumptions one should make on its curvature tensor? The bounded L2 curvature conjecture roughly asserts that one should only need L2 bounds of the curvature tensor on a given space-‐like hypersurface. This conjecture has its roots in the remarkable developments of the last twenty years centered around the issue of optimal well-‐posedness for nonlinear wave equations. In this context, a corresponding conjecture for nonlinear wave equations cannot hold, unless the nonlinearity has a very special nonlinear structure. I will present the proof of this conjecture, which sheds light on the specific null structure of the Einstein equations. This is joint work with Sergiu Klainerman and Igor Rodnianski. These lectures will start from scratch and require no specific background. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 1)
/ Fanny Bastien
/ 26-06-2014
/ Canal-u.fr
Szeftel Jérémie
Voir le résumé
Voir le résumé
In order to control locally a space time which satisfies the Einstein equations, what are the minimal assumptions one should make on its curvature tensor? The bounded L2 curvature conjecture roughly asserts that one should only need L2 bounds of the curvature tensor on a given space like hypersurface. This conjecture has its roots in the remarkable developments of the last twenty years centered around the issue of optimal well posedness for nonlinear wave equations. In this context, a corresponding conjecture for nonlinear wave equations cannot hold, unless the nonlinearity has a very special nonlinear structure. I will present the proof of this conjecture, which sheds light on the specific null structure of the Einstein equations. This is joint work with Sergiu Klainerman and Igor Rodnianski. These lectures will start from scratch and require no specific background. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|