|
|<
<< Page précédente
1
2
3
4
5
6
Page suivante >>
>|
|
documents par page
|
Tri :
Date
Editeur
Auteur
Titre
|
|
Les enjeux de la numérisation pour le média radio : le cas des radios associatives de Grenoble
/ Canal-u.fr
Voir le résumé
Voir le résumé
Intervention de Maria HOLUBOWICZ : Maître de conférences au Gresec, Université Stendhal Grenoble 3.Le 5 mai 2015 à l'Institut de la Communication et des Médias (Université Stendhal Grenoble 3). Communication au colloque international "La communication numérique au cœur des sociétés : dispositifs, logiques de développement et pratiques". Mot(s) clés libre(s) : Numérique - Communication - Information - Médias - Numérisation - radio associative - Grenoble
|
Accéder à la ressource
|
|
Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
The
fundamental problem in the theory of Diophantine approximation is to
understand how well points in the Euclidean space can be approximated by
rational vectors with given bounds on denominators. It turns out that
Diophantine properties of points can be encoded using flows on
homogeneous spaces, and in this course we explain how to use techniques
from the theory of dynamical systems to address some of questions in
Diophantine approximation. In particular, we give a dynamical proof of
Khinchin’s theorem and discuss Sprindzuk’s question regarding
Diophantine approximation with dependent quantities, which was solved
using non-divergence properties of unipotent flows. In conclusion we
explore the problem of Diophantine approximation on more general
algebraic varieties. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 3)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
The
fundamental problem in the theory of Diophantine approximation is to
understand how well points in the Euclidean space can be approximated by
rational vectors with given bounds on denominators. It turns out that
Diophantine properties of points can be encoded using flows on
homogeneous spaces, and in this course we explain how to use techniques
from the theory of dynamical systems to address some of questions in
Diophantine approximation. In particular, we give a dynamical proof of
Khinchin’s theorem and discuss Sprindzuk’s question regarding
Diophantine approximation with dependent quantities, which was solved
using non-divergence properties of unipotent flows. In conclusion we
explore the problem of Diophantine approximation on more general
algebraic varieties. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Andras Vasy - Microlocal analysis and wave propagation (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In the latter case there is no `standard' algebra of differential, or pseudodifferential, operators; I will discuss two important frameworks: Melrose's totally characteristic, or b, operators and scattering operators. Apart from the algebraic and mapping properties, I will discuss microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as normally hyperbolic trapping. The applications discussed will include Fredholm frameworks (which are thus global even for non elliptic problems!) for the Laplacian on asymptotically hyperbolic spaces and the wave operator on asymptotically de Sitter spaces, scattering theory for `scattering metrics' (such as the `large ends' of cones), wave propagation on asymptotically Minkowski spaces and generalizations (`Lorentzian scattering metrics') and on Kerr de Sitter type spaces. The lectures concentrate on linear PDE, but time permitting I will briefly discuss nonlinear versions. The lecture by the speaker in the final workshop will use these results to solve quasilinear wave equations globally, including describing the asymptotic behavior of solutions, on Kerr de Sitter spaces. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Andras Vasy - Microlocal analysis and wave propagation (Part 3)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In the latter case there is no `standard' algebra of differential, or pseudodifferential, operators; I will discuss two important frameworks: Melrose's totally characteristic, or b, operators and scattering operators. Apart from the algebraic and mapping properties, I will discuss microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as normally hyperbolic trapping. The applications discussed will include Fredholm frameworks (which are thus global even for non elliptic problems!) for the Laplacian on asymptotically hyperbolic spaces and the wave operator on asymptotically de Sitter spaces, scattering theory for `scattering metrics' (such as the `large ends' of cones), wave propagation on asymptotically Minkowski spaces and generalizations (`Lorentzian scattering metrics') and on Kerr de Sitter type spaces. The lectures concentrate on linear PDE, but time permitting I will briefly discuss nonlinear versions. The lecture by the speaker in the final workshop will use these results to solve quasilinear wave equations globally, including describing the asymptotic behavior of solutions, on Kerr de Sitter spaces. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Andras Vasy - Microlocal analysis and wave propagation (Part 4)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In the latter case there is no `standard' algebra of differential, or pseudodifferential, operators; I will discuss two important frameworks: Melrose's totally characteristic, or b, operators and scattering operators. Apart from the algebraic and mapping properties, I will discuss microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as normally hyperbolic trapping. The applications discussed will include Fredholm frameworks (which are thus global even for non elliptic problems!) for the Laplacian on asymptotically hyperbolic spaces and the wave operator on asymptotically de Sitter spaces, scattering theory for `scattering metrics' (such as the `large ends' of cones), wave propagation on asymptotically Minkowski spaces and generalizations (`Lorentzian scattering metrics') and on Kerr de Sitter type spaces. The lectures concentrate on linear PDE, but time permitting I will briefly discuss nonlinear versions. The lecture by the speaker in the final workshop will use these results to solve quasilinear wave equations globally, including describing the asymptotic behavior of solutions, on Kerr de Sitter spaces. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Andrew Lorent - The Aviles-Giga functional: past and present
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Bernard Parisse - GIAC/XCAS and PARI/GP
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : colloques, mathématique, Grenoble (Isère), institut fourier
|
Accéder à la ressource
|
|
Bill Allombert - New GP features
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
pas disponible Mot(s) clés libre(s) : mathématiques, colloques, Grenoble (Isère), institut fourier
|
Accéder à la ressource
|
|
Bruno Lévy - A numerical algorithm for L2 semi-discrete optimal transport in 3D
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
|<
<< Page précédente
1
2
3
4
5
6
Page suivante >>
>|
|
documents par page
|