Tri :
Date
Editeur
Auteur
Titre
|
|
Alexandre Sukhov - J-complex curves: some applications (Part 4)
/ Fanny Bastien
/ 28-06-2012
/ Canal-u.fr
Sukhov Alexandre
Voir le résumé
Voir le résumé
We
will focus in our lectures on the following : 1. J-complex discs in
almost complex manifolds : general properties. Linearization and
compactness. Gromov’s method : the Fredholm alternative for the d-bar
operator. Attaching a complex disc to a Lagrangian manifold.
Application : exotic symplectic structures. Hulls of totally real
manifolds : Alexander’s theorem. 2. Real surfaces in (almost) complex
surfaces. Filling real 2-spheres by a Levi-flat hypersurface (Bedford
-Gaveau-Gromov theorem). Some applications. Symplectic and contact
structures. Reeb foliation and the Weinsten conjecture. Hofer’s proof of
the Weinstein conjecture. 3. J-complex lines and hyperbolicity. The KAM
theory and Moser’s stability theorem for entire J-complex curves in
tori. Global deformation and Bangert’s theorem. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Andras Vasy - Microlocal analysis and wave propagation (Part 1)
/ Fanny Bastien
/ 16-06-2014
/ Canal-u.fr
Vasy Andràs
Voir le résumé
Voir le résumé
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In the latter case there is no `standard' algebra of differential, or pseudodifferential, operators; I will discuss two important frameworks: Melrose's totally characteristic, or b, operators and scattering operators. Apart from the algebraic and mapping properties, I will discuss microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as normally hyperbolic trapping. The applications discussed will include Fredholm frameworks (which are thus global even for non elliptic problems!) for the Laplacian on asymptotically hyperbolic spaces and the wave operator on asymptotically de Sitter spaces, scattering theory for `scattering metrics' (such as the `large ends' of cones), wave propagation on asymptotically Minkowski spaces and generalizations (`Lorentzian scattering metrics') and on Kerr de Sitter type spaces. The lectures concentrate on linear PDE, but time permitting I will briefly discuss nonlinear versions. The lecture by the speaker in the final workshop will use these results to solve quasilinear wave equations globally, including describing the asymptotic behavior of solutions, on Kerr de Sitter spaces. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Andras Vasy - Microlocal analysis and wave propagation (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In the latter case there is no `standard' algebra of differential, or pseudodifferential, operators; I will discuss two important frameworks: Melrose's totally characteristic, or b, operators and scattering operators. Apart from the algebraic and mapping properties, I will discuss microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as normally hyperbolic trapping. The applications discussed will include Fredholm frameworks (which are thus global even for non elliptic problems!) for the Laplacian on asymptotically hyperbolic spaces and the wave operator on asymptotically de Sitter spaces, scattering theory for `scattering metrics' (such as the `large ends' of cones), wave propagation on asymptotically Minkowski spaces and generalizations (`Lorentzian scattering metrics') and on Kerr de Sitter type spaces. The lectures concentrate on linear PDE, but time permitting I will briefly discuss nonlinear versions. The lecture by the speaker in the final workshop will use these results to solve quasilinear wave equations globally, including describing the asymptotic behavior of solutions, on Kerr de Sitter spaces. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Andras Vasy - Microlocal analysis and wave propagation (Part 3)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In the latter case there is no `standard' algebra of differential, or pseudodifferential, operators; I will discuss two important frameworks: Melrose's totally characteristic, or b, operators and scattering operators. Apart from the algebraic and mapping properties, I will discuss microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as normally hyperbolic trapping. The applications discussed will include Fredholm frameworks (which are thus global even for non elliptic problems!) for the Laplacian on asymptotically hyperbolic spaces and the wave operator on asymptotically de Sitter spaces, scattering theory for `scattering metrics' (such as the `large ends' of cones), wave propagation on asymptotically Minkowski spaces and generalizations (`Lorentzian scattering metrics') and on Kerr de Sitter type spaces. The lectures concentrate on linear PDE, but time permitting I will briefly discuss nonlinear versions. The lecture by the speaker in the final workshop will use these results to solve quasilinear wave equations globally, including describing the asymptotic behavior of solutions, on Kerr de Sitter spaces. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Andras Vasy - Microlocal analysis and wave propagation (Part 4)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In the latter case there is no `standard' algebra of differential, or pseudodifferential, operators; I will discuss two important frameworks: Melrose's totally characteristic, or b, operators and scattering operators. Apart from the algebraic and mapping properties, I will discuss microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as normally hyperbolic trapping. The applications discussed will include Fredholm frameworks (which are thus global even for non elliptic problems!) for the Laplacian on asymptotically hyperbolic spaces and the wave operator on asymptotically de Sitter spaces, scattering theory for `scattering metrics' (such as the `large ends' of cones), wave propagation on asymptotically Minkowski spaces and generalizations (`Lorentzian scattering metrics') and on Kerr de Sitter type spaces. The lectures concentrate on linear PDE, but time permitting I will briefly discuss nonlinear versions. The lecture by the speaker in the final workshop will use these results to solve quasilinear wave equations globally, including describing the asymptotic behavior of solutions, on Kerr de Sitter spaces. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Andras Vasy - Quasilinear waves and trapping: Kerr‐de Sitter space
/ Fanny Bastien
/ 30-06-2014
/ Canal-u.fr
Vasy Andràs
Voir le résumé
Voir le résumé
In this talk I will describe recent work with Peter Hintz on globally solving quasilinear wave equations in the presence of trapped rays, on Kerr de Sitter space, and obtaining the asymptotic behavior of solutions. For the associated linear problem without trapping, one would consider a global, non elliptic, Fredholm framework; in the presence of trapping the same framework is available for spaces of growing functions only. In order to solve the quasilinear problem we thus combine these frameworks with the normally hyperbolic trapping results of Dyatlov and a Nash Moser iteration scheme. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Andras Vasy - The Feynman propagator and its positivity properties
/ Fanny Bastien
/ 12-05-2016
/ Canal-u.fr
Vasy Andràs
Voir le résumé
Voir le résumé
One usually considers wave equations as evolution equations, i.e.
imposes initial data and solves them. Equivalently, one can consider the
forward and backward solution operators for the wave equation; these
solve an equation Lu=f" style="position: relative;" tabindex="0" id="MathJax-Element-1-Frame">Lu=f, for say f" style="position: relative;" tabindex="0" id="MathJax-Element-2-Frame">f compactly supported, by demanding that u" style="position: relative;" tabindex="0" id="MathJax-Element-3-Frame">u
is supported at points which are reachable by forward, respectively
backward, time-like or light-like curves. This property corresponds to
causality. But it has been known for a long time that in certain
settings, such as Minkowski space, there are other ways of solving wave
equations, namely the Feynman and anti-Feynman solution operators
(propagators). I will explain a general setup in which all of these
propagators are inverses of the wave operator on appropriate function
spaces, and also mention positivity properties, and the connection to
spectral and scattering theory in Riemannian settings, as well as to the
classical parametrix construction of Duistermaat and Hörmander. Mot(s) clés libre(s) : Feynman, Grenoble (Isère), institut fourier, colloquium mathalp, Propagator
|
Accéder à la ressource
|
|
Andrea Braides - Geometric measure theory issues from discrete energies
/ Fanny Bastien
/ 29-06-2015
/ Canal-u.fr
Braides Andrea
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 1)
/ Fanny Bastien
/ 02-07-2012
/ Canal-u.fr
Teleman Andrei
Voir le résumé
Voir le résumé
This
series of lectures is dedicated to recent results concerning the
existence of holomorphic curves on the surfaces of class VII. The first
lecture will be an introduction to the Donaldson theory. We will present
the fundamental notions and some important results in the theory,
explaining ideas of the proofs. In the second lecture we will present
the theory of holomorphic fiber bundles on complex surfaces, the
stability notion, moduli spaces and the Kobayashi-Hitschin
correspondence that links moduli spaces of stable fiber bundles (defined
in the fram of complex geometry) to moduli spaces of instantons
(defined in the frame of the Donaldson theory). In the last two lectures
we will prove the existence of holomorphic curves on minimal surfaces
of class VII with b2=1 or 2 and we will present the general strategy and
the last results obtained in the general case. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 2)
/ Fanny Bastien
/ 03-07-2012
/ Canal-u.fr
Teleman Andrei
Voir le résumé
Voir le résumé
This
series of lectures is dedicated to recent results concerning the
existence of holomorphic curves on the surfaces of class VII. The first
lecture will be an introduction to the Donaldson theory. We will present
the fundamental notions and some important results in the theory,
explaining ideas of the proofs. In the second lecture we will present
the theory of holomorphic fiber bundles on complex surfaces, the
stability notion, moduli spaces and the Kobayashi-Hitschin
correspondence that links moduli spaces of stable fiber bundles (defined
in the fram of complex geometry) to moduli spaces of instantons
(defined in the frame of the Donaldson theory). In the last two lectures
we will prove the existence of holomorphic curves on minimal surfaces
of class VII with b2=1 or 2 and we will present the general strategy and
the last results obtained in the general case. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|