Tri :
Date
Editeur
Auteur
Titre
|
|
Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 1)
/ Fanny Bastien
/ 03-07-2012
/ Canal-u.fr
Viterbo Claude
Voir le résumé
Voir le résumé
L’utilisation
de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été
dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou,
Kashiwara et Schapira. Nous essaierons d’en donner un aperçu à la fois
pour démontrer des résultats classiques, comme la conjecture d’Arnold,
et pour des résultats nouveaux.
The
use of methods from the Sheaf Theory (Kashiwara-Schapira) was
developped recently by Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara
and Schapira. We will try to give an insight of that, in order to prove
classical results, such as the Arnold conjecture, and to obtain new
results.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Jean-Louis Verger-Gaugry - Limit Equidistribution (Part 1)
/ Fanny Bastien
/ 26-06-2013
/ Canal-u.fr
Verger-Gaugry Jean-Louis
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, number theory, summer school
|
Accéder à la ressource
|
|
Andras Vasy - The Feynman propagator and its positivity properties
/ Fanny Bastien
/ 12-05-2016
/ Canal-u.fr
Vasy Andràs
Voir le résumé
Voir le résumé
One usually considers wave equations as evolution equations, i.e.
imposes initial data and solves them. Equivalently, one can consider the
forward and backward solution operators for the wave equation; these
solve an equation Lu=f" style="position: relative;" tabindex="0" id="MathJax-Element-1-Frame">Lu=f, for say f" style="position: relative;" tabindex="0" id="MathJax-Element-2-Frame">f compactly supported, by demanding that u" style="position: relative;" tabindex="0" id="MathJax-Element-3-Frame">u
is supported at points which are reachable by forward, respectively
backward, time-like or light-like curves. This property corresponds to
causality. But it has been known for a long time that in certain
settings, such as Minkowski space, there are other ways of solving wave
equations, namely the Feynman and anti-Feynman solution operators
(propagators). I will explain a general setup in which all of these
propagators are inverses of the wave operator on appropriate function
spaces, and also mention positivity properties, and the connection to
spectral and scattering theory in Riemannian settings, as well as to the
classical parametrix construction of Duistermaat and Hörmander. Mot(s) clés libre(s) : Feynman, Grenoble (Isère), institut fourier, colloquium mathalp, Propagator
|
Accéder à la ressource
|
|
Andras Vasy - Quasilinear waves and trapping: Kerr‐de Sitter space
/ Fanny Bastien
/ 30-06-2014
/ Canal-u.fr
Vasy Andràs
Voir le résumé
Voir le résumé
In this talk I will describe recent work with Peter Hintz on globally solving quasilinear wave equations in the presence of trapped rays, on Kerr de Sitter space, and obtaining the asymptotic behavior of solutions. For the associated linear problem without trapping, one would consider a global, non elliptic, Fredholm framework; in the presence of trapping the same framework is available for spaces of growing functions only. In order to solve the quasilinear problem we thus combine these frameworks with the normally hyperbolic trapping results of Dyatlov and a Nash Moser iteration scheme. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Andras Vasy - Microlocal analysis and wave propagation (Part 1)
/ Fanny Bastien
/ 16-06-2014
/ Canal-u.fr
Vasy Andràs
Voir le résumé
Voir le résumé
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In the latter case there is no `standard' algebra of differential, or pseudodifferential, operators; I will discuss two important frameworks: Melrose's totally characteristic, or b, operators and scattering operators. Apart from the algebraic and mapping properties, I will discuss microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as normally hyperbolic trapping. The applications discussed will include Fredholm frameworks (which are thus global even for non elliptic problems!) for the Laplacian on asymptotically hyperbolic spaces and the wave operator on asymptotically de Sitter spaces, scattering theory for `scattering metrics' (such as the `large ends' of cones), wave propagation on asymptotically Minkowski spaces and generalizations (`Lorentzian scattering metrics') and on Kerr de Sitter type spaces. The lectures concentrate on linear PDE, but time permitting I will briefly discuss nonlinear versions. The lecture by the speaker in the final workshop will use these results to solve quasilinear wave equations globally, including describing the asymptotic behavior of solutions, on Kerr de Sitter spaces. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Emmanuel Trélat - Théorie du contrôle optimal et applications aux missions spatiales
/ Fanny Bastien
/ 11-02-2016
/ Canal-u.fr
Trélat Emmanuel
Voir le résumé
Voir le résumé
La problématique du contrôle optimal est de guider l'évolution en temps
d'un système donné vers une configuration finale souhaitée, tout en
minimisant un certain critère. Le point saillant de cette théorie, qui
généralise le calcul des variations, est le principe du maximum de
Pontryagin, qui donne des conditions nécessaires d'optimalité du premier
ordre. Du point de vue numérique ce principe réduit le problème initial
à un problème aux deux bouts qui peut être résolu par une méthode de
tir.
En pratique il est très difficile de faire converger numériquement une
méthode de tir, et elle doit être combinée à d'autres approches. Je
parlerai ici, sur des exemples motivés par l'aérospatiale, des méthodes
de continuation numérique, de contrôle géométrique, puis d'éléments de
théorie des systèmes dynamiques qui, convenablement utilisés, permettent
de planifier des missions spatiales interplanétaires. Mot(s) clés libre(s) : théorie du contrôle, Grenoble (Isère), institut fourier, colloquium mathalp, aérospatial
|
Accéder à la ressource
|
|
Tatiana Toro - Geometry of measures and applications (Part 5)
/ Fanny Bastien
/ 19-06-2015
/ Canal-u.fr
Toro Tatiana
Voir le résumé
Voir le résumé
In the 1920's Besicovitch studied
linearly measurable sets in the plane, that is sets with locally finite
"length". The basic question he addressed was whether the infinitesimal
properties of the "length" of a set E in the plane yield geometric
information on E itself. This simple question marks the beginning of the
study of the geometry of measures and the associated field known as
Geometric Measure Theory (GMT).
In
this series of lectures we will present some of the main results in the
area concerning the regularity of the support of a measure in terms of
the behavior of its density or in terms of its tangent structure. We
will discuss applications to PDEs, free boundary regularity problem and
harmonic analysis. The aim is that the GMT component of the mini-course
will be self contained. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Tatiana Toro - Geometry of measures and applications (Part 4)
/ Fanny Bastien
/ 18-06-2015
/ Canal-u.fr
Toro Tatiana
Voir le résumé
Voir le résumé
In the 1920's Besicovitch studied
linearly measurable sets in the plane, that is sets with locally finite
"length". The basic question he addressed was whether the infinitesimal
properties of the "length" of a set E in the plane yield geometric
information on E itself. This simple question marks the beginning of the
study of the geometry of measures and the associated field known as
Geometric Measure Theory (GMT).
In
this series of lectures we will present some of the main results in the
area concerning the regularity of the support of a measure in terms of
the behavior of its density or in terms of its tangent structure. We
will discuss applications to PDEs, free boundary regularity problem and
harmonic analysis. The aim is that the GMT component of the mini-course
will be self contained. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Tatiana Toro - Geometry of measures and applications (Part 3)
/ Fanny Bastien
/ 17-06-2015
/ Canal-u.fr
Toro Tatiana
Voir le résumé
Voir le résumé
In the 1920's Besicovitch studied
linearly measurable sets in the plane, that is sets with locally finite
"length". The basic question he addressed was whether the infinitesimal
properties of the "length" of a set E in the plane yield geometric
information on E itself. This simple question marks the beginning of the
study of the geometry of measures and the associated field known as
Geometric Measure Theory (GMT).
In
this series of lectures we will present some of the main results in the
area concerning the regularity of the support of a measure in terms of
the behavior of its density or in terms of its tangent structure. We
will discuss applications to PDEs, free boundary regularity problem and
harmonic analysis. The aim is that the GMT component of the mini-course
will be self contained. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Tatiana Toro - Geometry of measures and applications (Part 2)
/ Fanny Bastien
/ 16-06-2015
/ Canal-u.fr
Toro Tatiana
Voir le résumé
Voir le résumé
In the 1920's Besicovitch studied
linearly measurable sets in the plane, that is sets with locally finite
"length". The basic question he addressed was whether the infinitesimal
properties of the "length" of a set E in the plane yield geometric
information on E itself. This simple question marks the beginning of the
study of the geometry of measures and the associated field known as
Geometric Measure Theory (GMT).
In
this series of lectures we will present some of the main results in the
area concerning the regularity of the support of a measure in terms of
the behavior of its density or in terms of its tangent structure. We
will discuss applications to PDEs, free boundary regularity problem and
harmonic analysis. The aim is that the GMT component of the mini-course
will be self contained. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|