Tri :
Date
Editeur
Auteur
Titre
|
|
Mark Pollicott - Dynamical Zeta functions (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Marie-José Bertin - Des nombres de Salem à la mesure de Mahler de surfaces K3 (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
Le
récent article de McMullen « Dynamics with small entropy on projective
K3 surfaces » éclaire d’un jour nouveau les nombres de Salem. Ces
entiers algébriques gardent cependant tout leur mystère. On peut tous
les obtenir grâce à la construction de Salem (Boyd (1977)) et cependant
on ignore s’il en existe un inférieur à 1,1762... Après avoir rappelé la
construction de Salem et le théorème de Boyd, on définira la mesure de
Mahler logarithmique d’un polynôme de plusieurs variables. On prouvera
que la mesure de Mahler d’un polynôme de deux variables est la limite
d’une suite de mesures de Mahler de polynômes d’une variable (Boyd
(1981)). On donnera des mesures explicites de mesures de Mahler de
certaines classes de polynômes de 2 et 3 variables. En particulier dans
le cas de 3 variables on présentera deux aspects de l’expression de
cette mesure, un aspect arithmétique comme série L de Hecke d’un corps
quadratique imaginaire et un aspect géométrique comme série L de la
surface K3 définie par le polynôme qui s’exprime comme série L d’une
forme modulaire de poids 3 à coefficients rationnels. Pour terminer, on
évoquera des problèmes plus géométriques de fibrations elliptiques sur
les surfaces K3 algébriques. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Lars Andersson - Geometry and analysis in black hole spacetimes (Part 4)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
Black holes play a central role in general relativity and astrophysics. The problem of proving the dynamical stability of the Kerr black hole spacetime, which is describes a rotating black hole in vacuum, is one of the most important open problems in general relativity.
Following a brief introduction to the evolution problem for the
Einstein equations, I will give some background on geometry of the Kerr spacetime. The
analysis of fields on the exterior of the Kerr black hole serve as important model problems for the black hole stability problem. I will discuss some of the difficulties one encounters in analyzing waves in the Kerr exterior
and how they can be overcome. A fundamentally important as
pect of geometry and analysis in the Kerr spacetime is the fact that it is algebraically special, of Petrov type D, and therefore admits a Killing spinor of valence 2. I will introduce the 2 spinor and related formalisms which can be used to see how this structure leads to the Carter constant and the Teukolsky system. If there is
time, I will discuss in this context some new conservation laws for fields of non zero spin. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Karma Dajani - An introduction to Ergodic Theory of Numbers (Part 3)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
In
this course we give an introduction to the ergodic theory behind common
number expansions, like expansions to integer and non-integer bases,
Luroth series and continued fraction expansion. Starting with basic
ideas in ergodic theory such as ergodicity, the ergodic theorem and
natural extensions, we apply these to the familiar expansions mentioned
above in order to understand the structure and global behaviour of
different number theoretic expansions, and to obtain new and old results
in an elegant and straightforward manner. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 3)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
In order to control locally a space-‐time which satisfies the Einstein equations, what are the minimal assumptions one should make on its curvature tensor? The bounded L2 curvature conjecture roughly asserts that one should only need L2 bounds of the curvature tensor on a given space-‐like hypersurface. This conjecture has its roots in the remarkable developments of the last twenty years centered around the issue of optimal well-‐posedness for nonlinear wave equations. In this context, a corresponding conjecture for nonlinear wave equations cannot hold, unless the nonlinearity has a very special nonlinear structure. I will present the proof of this conjecture, which sheds light on the specific null structure of the Einstein equations. This is joint work with Sergiu Klainerman and Igor Rodnianski. These lectures will start from scratch and require no specific background. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
In order to control locally a space-‐time which satisfies the Einstein equations, what are the minimal assumptions one should make on its curvature tensor? The bounded L2 curvature conjecture roughly asserts that one should only need L2 bounds of the curvature tensor on a given space-‐like hypersurface. This conjecture has its roots in the remarkable developments of the last twenty years centered around the issue of optimal well-‐posedness for nonlinear wave equations. In this context, a corresponding conjecture for nonlinear wave equations cannot hold, unless the nonlinearity has a very special nonlinear structure. I will present the proof of this conjecture, which sheds light on the specific null structure of the Einstein equations. This is joint work with Sergiu Klainerman and Igor Rodnianski. These lectures will start from scratch and require no specific background. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties (Part 4)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
We
will first introduce the basic concepts pertaining to Kobayashi
pseudo-distances and hyperbolic complex spaces, including Brody’s
theorem and the Ahlfors-Schwarz lemma. One of the main goals of the
theory is to understand conditions under which a given algebraic variety
is Kobayashi hyperbolic. This leads to the introduction of jet spaces
and jet metrics, and provides a strong link between the existence of
entire curves and the existence of global algebraic differential
equations.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties (Part 3)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
We
will first introduce the basic concepts pertaining to Kobayashi
pseudo-distances and hyperbolic complex spaces, including Brody’s
theorem and the Ahlfors-Schwarz lemma. One of the main goals of the
theory is to understand conditions under which a given algebraic variety
is Kobayashi hyperbolic. This leads to the introduction of jet spaces
and jet metrics, and provides a strong link between the existence of
entire curves and the existence of global algebraic differential
equations.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
We
will first introduce the basic concepts pertaining to Kobayashi
pseudo-distances and hyperbolic complex spaces, including Brody’s
theorem and the Ahlfors-Schwarz lemma. One of the main goals of the
theory is to understand conditions under which a given algebraic variety
is Kobayashi hyperbolic. This leads to the introduction of jet spaces
and jet metrics, and provides a strong link between the existence of
entire curves and the existence of global algebraic differential
equations. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, feuilletages, COURBES PSEUDOHOLOMORPHES
|
Accéder à la ressource
|
|
Jean-Louis Verger-Gaugry - Limit Equidistribution (Part 2)
/ Fanny Bastien
/ Canal-u.fr
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|