Nouveautés
Recherche simple :
Accueil
Documents
Pédagogie
Thèses
Publications Scientifiques
Multi-formats
Pédagogie > Recherche par mots-clefs en fr
  • Nouveautés
  • Recherche avancée
  • Recherche thématique UNIT
  • Recherche thématique
  • Recherche par établissements
  • Recherche par auteurs
  • Recherche par mots-clefs
Mots-clefs > M > mathématiques
Niveau supérieur
  • 250 ressources ont été trouvées. Voici les résultats 41 à 50
  |< << Page précédente 1 2 3 4 5 6 7 8 9 10 Page suivante >> >| documents par page
Tri :   Date Editeur Auteur Titre

Bruno Lévy - A numerical algorithm for L2 semi-discrete optimal transport in 3D

/ Fanny Bastien / Canal-u.fr
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Bill Allombert - New GP features

/ Fanny Bastien / Canal-u.fr
Voir le résumé
Voir le résumé
pas disponible
Mot(s) clés libre(s) : mathématiques, colloques, Grenoble (Isère), institut fourier
 |  Accéder à la ressource

Bernard Parisse - GIAC/XCAS and PARI/GP

/ Fanny Bastien / Canal-u.fr
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : colloques, mathématique, Grenoble (Isère), institut fourier
 |  Accéder à la ressource

Andrew Lorent - The Aviles-Giga functional: past and present

/ Fanny Bastien / Canal-u.fr
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Andras Vasy - Microlocal analysis and wave propagation (Part 4)

/ Fanny Bastien / Canal-u.fr
Voir le résumé
Voir le résumé
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In the latter case there is no `standard' algebra of differential, or pseudodifferential, operators; I will discuss two important frameworks: Melrose's totally characteristic, or b, operators and scattering operators. Apart from the algebraic and mapping properties, I will discuss microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as normally hyperbolic trapping. The applications discussed will include Fredholm frameworks (which are thus global even for non elliptic problems!) for the Laplacian on asymptotically hyperbolic spaces and the wave operator on asymptotically de Sitter spaces, scattering theory for `scattering metrics' (such as the `large ends' of cones), wave propagation on asymptotically Minkowski spaces and generalizations (`Lorentzian scattering metrics') and on Kerr de Sitter type spaces. The lectures concentrate on linear PDE, but time permitting I will briefly discuss nonlinear versions. The lecture by the speaker in the final workshop will use these results to solve quasilinear wave equations globally, including describing the asymptotic behavior of solutions, on Kerr de Sitter spaces.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
 |  Accéder à la ressource

Andras Vasy - Microlocal analysis and wave propagation (Part 3)

/ Fanny Bastien / Canal-u.fr
Voir le résumé
Voir le résumé
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In the latter case there is no `standard' algebra of differential, or pseudodifferential, operators; I will discuss two important frameworks: Melrose's totally characteristic, or b, operators and scattering operators. Apart from the algebraic and mapping properties, I will discuss microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as normally hyperbolic trapping. The applications discussed will include Fredholm frameworks (which are thus global even for non elliptic problems!) for the Laplacian on asymptotically hyperbolic spaces and the wave operator on asymptotically de Sitter spaces, scattering theory for `scattering metrics' (such as the `large ends' of cones), wave propagation on asymptotically Minkowski spaces and generalizations (`Lorentzian scattering metrics') and on Kerr de Sitter type spaces. The lectures concentrate on linear PDE, but time permitting I will briefly discuss nonlinear versions. The lecture by the speaker in the final workshop will use these results to solve quasilinear wave equations globally, including describing the asymptotic behavior of solutions, on Kerr de Sitter spaces.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
 |  Accéder à la ressource

Andras Vasy - Microlocal analysis and wave propagation (Part 2)

/ Fanny Bastien / Canal-u.fr
Voir le résumé
Voir le résumé
In these lectures I will explain the basics of microlocal analysis, emphasizing non elliptic problems, such as wave propagation, both on manifolds without boundary, and on manifolds with boundary. In the latter case there is no `standard' algebra of differential, or pseudodifferential, operators; I will discuss two important frameworks: Melrose's totally characteristic, or b, operators and scattering operators. Apart from the algebraic and mapping properties, I will discuss microlocal ellipticity, real principal type propagation, radial points and generalizations, as well as normally hyperbolic trapping. The applications discussed will include Fredholm frameworks (which are thus global even for non elliptic problems!) for the Laplacian on asymptotically hyperbolic spaces and the wave operator on asymptotically de Sitter spaces, scattering theory for `scattering metrics' (such as the `large ends' of cones), wave propagation on asymptotically Minkowski spaces and generalizations (`Lorentzian scattering metrics') and on Kerr de Sitter type spaces. The lectures concentrate on linear PDE, but time permitting I will briefly discuss nonlinear versions. The lecture by the speaker in the final workshop will use these results to solve quasilinear wave equations globally, including describing the asymptotic behavior of solutions, on Kerr de Sitter spaces.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
 |  Accéder à la ressource

Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 3)

/ Fanny Bastien / Canal-u.fr
Voir le résumé
Voir le résumé
The fundamental problem in the theory of Diophantine approximation is to understand how well points in the Euclidean space can be approximated by rational vectors with given bounds on denominators. It turns out that Diophantine properties of points can be encoded using flows on homogeneous spaces, and in this course we explain how to use techniques from the theory of dynamical systems to address some of questions in Diophantine approximation. In particular, we give a dynamical proof of Khinchin’s theorem and discuss Sprindzuk’s question regarding Diophantine approximation with dependent quantities, which was solved using non-divergence properties of unipotent flows. In conclusion we explore the problem of Diophantine approximation on more general algebraic varieties.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
 |  Accéder à la ressource

Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 2)

/ Fanny Bastien / Canal-u.fr
Voir le résumé
Voir le résumé
The fundamental problem in the theory of Diophantine approximation is to understand how well points in the Euclidean space can be approximated by rational vectors with given bounds on denominators. It turns out that Diophantine properties of points can be encoded using flows on homogeneous spaces, and in this course we explain how to use techniques from the theory of dynamical systems to address some of questions in Diophantine approximation. In particular, we give a dynamical proof of Khinchin’s theorem and discuss Sprindzuk’s question regarding Diophantine approximation with dependent quantities, which was solved using non-divergence properties of unipotent flows. In conclusion we explore the problem of Diophantine approximation on more general algebraic varieties.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
 |  Accéder à la ressource

Maciej Zworski - From redshift effect to classical dynamics : microlocal proof of Smale's conjecture

/ Fanny Bastien / 30-06-2014 / Canal-u.fr
Zworski Maciej
Voir le résumé
Voir le résumé
Dynamical zeta functions of Selberg, Smale and Ruelle are analogous to the Riemann zeta function with the product over primes replaced by products over closed orbits of Anosov flows. In 1967 Smale conjectured that these zeta functions should be meromorphic but admitted "that a positive answer would be a little shocking". Nevertheless the continuation was proved in 2012 by Giulietti-­Liverani-­Pollicott. By combining the Faure Sjöstrand approach to Anosov flows and Melrose's microlocal radial estimates, Dyatlov and I gave a simple proof of that conjecture. The same radial estimates were used by Vasy to provide a microlocal explanation of the redshift effect and propagation estimates for Kerr de Sitter like spaces.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
 |  Accéder à la ressource

rss |< << Page précédente 1 2 3 4 5 6 7 8 9 10 Page suivante >> >| documents par page
© 2006-2010 ORI-OAI