Tri :
Date
Editeur
Auteur
Titre
|
|
Au cœur des matériaux cristallins
/ Ecole des Mines d'Albi-Carmaux
/ 23-01-2009
/
Lours Philippe
Voir le résumé
Voir le résumé
Ce cours de science des matériaux a été conçu à l'Ecole des Mines d'Albi-Carmaux pour les élèves-ingénieur de 2ième année.
Il n'a pas d'autre ambition que d'introduire les principaux concepts de la science des matériaux utiles à l'ingénieur généraliste que nous formons. Il contribue par ailleurs au socle scientifique sur lequel seront construits de nombreux enseignements dédiés aux matériaux et proposés à nos élèves plus tard dans leur cursus, notamment au niveau des options de dernière année "Matériaux pour l'Aéronautique et le Spatial" et "Ingénierie des Matériaux".
Dans un premier temps, le cours traite de l'architecture et de la cohésion des solides, essentiellement cristallins, et de leur caractérisation cristallographique par diffraction des rayons X. Dans un second temps, les différents types de défauts présents dans les solides sont décrits en insistant particulièrement sur le rôle qu'ils jouent sur les propriétés d'usage. La constitution des alliages métalliques et les diagrammes de phases qui régissent les équilibres thermodynamiques sont ensuite présentés. Enfin, après avoir détaillé les bases des processus de diffusion à l'état solide, les transformations de phases, avec et sans diffusion, sont décrites.
Une grande part des micrographies, illustrations et vidéo proposées dans le document proviennent des travaux de recherche et d'expertise de l'auteur. Mot(s) clés libre(s) : génie mécanique, matériau, cohésion des solides, solides cristallins, caractérisation cristallographique, diffraction des rayons X, défauts cristallins, alliages métalliques, diagrammes de phases, transformations de phases
|
Accéder à la ressource
|
|
Le bois
/ Mission 2000 en France
/ 10-10-2000
/ Canal-U - OAI Archive
MORLIER Pierre
Voir le résumé
Voir le résumé
Des évolutions récentes (contraintes environnementales, amélioration de la sylviculture, organisation de l'espace rural) conduiront vraisemblablement à une augmentation de l'offre de produits forestiers sur le marché des matériaux. Cette offre se caractérise par une grande diversité qui sera décrite et analysée en détail : - diversité des essences, - variabilité intra-arbre, - variabilité inter-arbres. Elle se caractérise également par l'hygroscopie du matériau, l'anisotropie de ses propriétés, leur évolution dans le temps, trois caractères qui seront explicités et rapprochés de la structure du bois. Selon les choix techniques et économiques adoptés pour la chaîne qui relie la production forestière au secteur final d'utilisation (le Bâtiment, l'Ameublement, l'Emballage), la diversité pourra permettre, ou interdire, au bois d'être le matériau de base pour le XXIe siècle. Mot(s) clés libre(s) : biomatériau, bois, cellulose, forêt, génie civil, génie des matériaux, matériau de construction, plan ligneux, propriétés mécaniques
|
Accéder à la ressource
|
|
Relire darwin : le meilleur moyen de défendre la théorie de l'évolution
/ BioMedia-UPMC
/ 25-02-2011
/ Unisciel
Morange Michel
Voir le résumé
Voir le résumé
Relire Darwin, en particulier L’origine des espèces qui représente le livre central de son œuvre, est un des meilleurs moyens pour défendre correctement la théorie de l’évolution. Non que L’origine des espèces contienne tous les développements de la biologie évolutive qui sont intervenus pendant le XXe siècle, ni que Darwin ne se soit pas trompé. Mais cette lecture fait comprendre toutes les difficultés que Darwin rencontre pour introduire une théorie aussi révolutionnaire que celle de l’évolution par sélection naturelle, ainsi que le soin et l’honnêteté avec lesquels il décrit les faits qui s’opposent à son modèle, et les théories concurrentes. Darwin n’exclut aucun mécanisme pour l’évolution, mais privilégie l’action de la sélection naturelle. Mot(s) clés libre(s) : Evolution, mécanisme
|
Accéder à la ressource
|
|
Médicaments et chimie : un brillant passé et un vrai futur
/ UTLS - la suite
/ 24-06-2006
/ Canal-U - OAI Archive
MEUNIER Bernard
Voir le résumé
Voir le résumé
Très tôt l’homme a utilisé les produits de la Nature pour traiter les différentes maladies auxquelles il était confronté. Les premiers traités de chimie thérapeutique moderne, décrivant la relation entre un composé chimique et une activité thérapeutique datent maintenant de plusieurs siècles. Toutefois, c'est au tournant du 19ème et du 20ème siècle avec le développement de la chimie moléculaire et de la microbiologie que la chimie thérapeutique prend son essor. L'évolution rapide de ces deux disciplines a conduit aux premiers antibiotiques. Sait-on encore que la production à grande échelle de la pénicilline a mobilisé aux Etats-Unis entre 1943 et 1945 plusieurs centaines de scientifiques, autant que pour la mise au point des premières bombes atomiques ? Tout au long du 20ème siècle, l'application stricte des règles d'hygiène pasteuriennes et la mise au point de nombreux médicaments font régresser les maladies et la durée de vie augmente. Beaucoup reste à faire, mais la création de nouveaux médicaments élaborés par synthèse chimique semble marquer le pas à partir des années 1980 à 1990. Les apports récents de la génomique et la protéomique donnent l'espoir d'accéder à de nouvelles méthodes de découvertes de médicaments. La chimie thérapeutique est-elle condamner à un déclin irréversible ou bien va-t-elle refleurir à nouveau, en intégrant les nouveaux outils de la biologie moléculaire, et apporter de nouveaux espoirs dans le traitement de maladies émergeantes ou ré-émergeantes ? L'innovation thérapeutique demande la mise en place des synergies fortes entre chercheurs de quatre à cinq disciplines différentes ; comment favoriser ces synergies ? Les enjeux de l'innovation thérapeutique concernent non seulement le domaine de la santé, mais aussi celui de l'économie. La découverte et le développement de nouveaux médicaments mobilisent de nombreux effectifs. L'Europe continentale gardera t-elle sa place dans l'innovation thérapeutique au 21ème siècle ? Mot(s) clés libre(s) : biologie moléculaire, chimie thérapeutique, composé chimique, génomique, mécanisme d'action, médicament, métabolite, molécule de synthèse, protéomique, synthèse chimique
|
Accéder à la ressource
|
|
Hydraulique pour le génie des procédés
/ CNAM, UNIT
/ 20-12-2015
/
Debacq Marie, Buvat Jean-Christophe, Lacour Corine, Bonnin Johanne, Cosson Xavier, Desmorieux Hélène
Voir le résumé
Voir le résumé
Le module d'auto-formation "HYDRAULIQUE pour le génie des procédés" vous permettra d'apprendre à calculer des pertes de charge, choisir et dimensionner une pompe pour circuit hydraulique dans un atelier de production. La première partie vous permettra de revoir ou d'aborder les notions de pression, débits, masse volumique et viscosité, l'analyse dimensionnelle, le nombre de Reynolds, la notion de couche limite, le principe fondamental de l'hydrostatique et l'équation de Bernoulli. La deuxième partie concerne le calcul des pertes de charge, qu'elles soient régulières ou singulières. Vous y aborderez la question du calcul des conduites et des réseaux. Ce sera également l'occasion de donner quelques éléments sur les différents types de vannes. La troisième et dernière partie est consacrée aux pompes, avec un volet sur la technologie et les critères de choix, puis la problématique du dimensionnement des pompes centrifuges et enfin le cas des pompes à vide. Ce module comporte des quiz et des exercices ; il est illustré par différents schémas, dessins, animations et vidéos. Vous disposez d'une nomenclature interactive, d'un glossaire, d'une liste des abréviations et des références bibliographiques majeures. Mot(s) clés libre(s) : hydraulique, mécanique des fluides, hydrostatique, équation de Bernoulli, viscosité, nombre de Reynolds, profil de vitesse, couche limite, pertes de charge, pompe, dimensionnement, vanne, conduite
|
Accéder à la ressource
|
|
C'est quoi la gravité ?
/ ENS Lyon CultureSciences-Physique, Catherine Simand
/ 24-10-2006
/ Unisciel
Magro Marc
Voir le résumé
Voir le résumé
C'est quoi la gravité ? : une conférence de Marc Magro, Maître de
Conférences à l'ENS Lyon, présentée dans le cadre des conférences de Formaterre 2006
(INRP, ENS Lyon). Mot(s) clés libre(s) : gravité, masse inertielle, masse gravitationnelle, relativité, relativité restreinte, relativité générale, espace-temps, courbure de l'espace-temps, transformations de Lorentz, transformations de Galilée, mécanique classique, ether, mécanique Newtonienne, gravité quantique, théorie des cordes, simultanéité, géométrie euclidienne
|
Accéder à la ressource
|
|
Fluides et tourbillons
/ Mission 2000 en France
/ 08-08-2000
/ Canal-U - OAI Archive
LESIEUR Marcel
Voir le résumé
Voir le résumé
"Les récents ouragans sur la France nous ont brutalement rappelé l'importance des fluides tels que l'air et l'eau. Ces fluides obéissent aux lois de la mécanique classique de Newton. Ils sont très instables: dans le sillage d'un obstacle (sur une automobile, un TGV, un avion ou un navire), les différences de vitesse engendrent de magnifiques tourbillons en spirale, qui, tels des vagues sur l'océan, déferlent en turbulence. Cette turbulence est bien décrite à petite échelle par la fameuse "" cascade de Kolmogorov "", où les différences de vitesse entre deux points sont proportionnelles à la puissance un tiers de leur distance. La turbulence est en fait considérée comme un des derniers grands problèmes non résolus de la physique moderne. A l'heure où les biologistes élucident la structure du génome humain, des progrès décisifs sur la structure de la turbulence et des tourbillons qui la composent ont pu être faits par la résolution numérique sur super-calculateur scientifique des équations du mouvement. Un traitement d'image performant permet de visualiser les tourbillons et de suivre leur évolution. Une avancée considérable a en particulier été faite grâce au concept de "" simulation des grandes échelles "", où les fluctuations à petite échelle sont éliminées et modélisées par une viscosité turbulente intelligente. On montre des exemples de ces simulations réalisées à Grenoble (par "" viscosités spectrale ""), avec les anneaux-vortex (responsables des ronds de fumée) dans un jet, et les tourbillons en arche au voisinage d'une paroi et sur une cavité. La simulation numérique est un outil très précieux pour le contrôle de la turbulence en aérodynamique, acoustique, combustion et pollution." Mot(s) clés libre(s) : écoulement, mécanique des fluides, simulation numérique, tempête, théorème de Bernoulli, thermodynamique, tourbillon, turbulence, viscosité, vorticité
|
Accéder à la ressource
|
|
Fluides et tourbillons
/ Mission 2000 en France
/ 08-08-2000
/ Canal-u.fr
LESIEUR Marcel
Voir le résumé
Voir le résumé
"Les récents ouragans sur la France nous ont brutalement rappelé l'importance des fluides tels que l'air et l'eau. Ces fluides obéissent aux lois de la mécanique classique de Newton. Ils sont très instables: dans le sillage d'un obstacle (sur une automobile, un TGV, un avion ou un navire), les différences de vitesse engendrent de magnifiques tourbillons en spirale, qui, tels des vagues sur l'océan, déferlent en turbulence. Cette turbulence est bien décrite à petite échelle par la fameuse "" cascade de Kolmogorov "", où les différences de vitesse entre deux points sont proportionnelles à la puissance un tiers de leur distance. La turbulence est en fait considérée comme un des derniers grands problèmes non résolus de la physique moderne. A l'heure où les biologistes élucident la structure du génome humain, des progrès décisifs sur la structure de la turbulence et des tourbillons qui la composent ont pu être faits par la résolution numérique sur super-calculateur scientifique des équations du mouvement. Un traitement d'image performant permet de visualiser les tourbillons et de suivre leur évolution. Une avancée considérable a en particulier été faite grâce au concept de "" simulation des grandes échelles "", où les fluctuations à petite échelle sont éliminées et modélisées par une viscosité turbulente intelligente. On montre des exemples de ces simulations réalisées à Grenoble (par "" viscosités spectrale ""), avec les anneaux-vortex (responsables des ronds de fumée) dans un jet, et les tourbillons en arche au voisinage d'une paroi et sur une cavité. La simulation numérique est un outil très précieux pour le contrôle de la turbulence en aérodynamique, acoustique, combustion et pollution." Mot(s) clés libre(s) : thermodynamique, viscosité, théorème de Bernoulli, mécanique des fluides, tempête, tourbillon, turbulence, écoulement, simulation numérique, vorticité
|
Accéder à la ressource
|
|
L'adhésion
/ UTLS - la suite
/ 09-07-2005
/ Canal-U - OAI Archive
LéGER Liliane
Voir le résumé
Voir le résumé
Les phénomènes d'adhésion sont présents partout dans notre quotidien, depuis l'expérience du bricoleur qui dépose un joint de colle pour réparer un objet (et chacun sait que si cela semble simple, ce n'est pas toujours fiable !) jusqu'à l'élaboration d'objets techniquement très complexes (structures alvéolaires de la coiffe de la fusée Ariane par exemple), en passant par notre fonctionnement biologique lui-même, puisque l'adhésion cellulaire est un élément clé de l'organisation des êtres complexes. Mais si ils sont omniprésents, et utilisés en pratique, les phénomènes d'adhésion sont longtemps restés peu compris, quant à leurs mécanismes physiques et physico-chimiques de base, non compréhension qui a été un frein important à leur utilisation technologique. Ceci a profondément changé au cours de ces dix à quinze dernières années, et ce sont ces progrès récents que nous nous attacherons à décrire. On a longtemps pensé que l'adhésion était une question de chimie interfaciale : pour faire tenir ensemble deux solides, il paraissait évident qu'il était nécessaire de créer des liaisons chimiques solides et nombreuses entre les deux surfaces en contact. Nous montrerons que cette idée est loin d'être vraie : si des liaisons chimiques sont utiles pour permettre à un assemblage de résister à des contraintes mécaniques, elles sont très loin de suffire à rendre compte des énergies d'adhésion pratiques. Pour qu'un joint adhésif soit solide, il faut qu'il soit capable, lorsqu'on le sollicite mécaniquement, de consommer de façon irréversible de l'énergie lors de sa déformation, et plus ces dissipations prennent place dans un volume important du matériau, plus l'énergie nécessaire à rompre l'adhésion est grande. La science de l'adhésion est donc une science pluridisciplinaire, mettant en jeu de la chimie et de la physique des interfaces, et, puisque les tests d'adhésion sont des tests de rupture des assemblages, de la mécanique de la rupture. Les progrès récents dans ces différentes disciplines sont à l'origine des progrès récents en science de l'adhésion. Nous montrerons plusieurs exemples dans lesquels des expériences systématiques, conduites sur des systèmes modèles, mettant souvent en jeu des polymères (car la plupart des adhésifs sont des polymères) ont permis d'identifier de façon précise les mécanismes moléculaires mis en jeu lors de la formation puis de la rupture d'assemblages adhésifs, et donc ouvert la voie à l'utilisation de ces mécanismes de façon optimisée. Mot(s) clés libre(s) : adhésion, cohésion, collage, dissipation d'énergie, énergie de rupture, mécanique de la rupture, mouillage, pelage, physique de la matière condensée, polymère, résistance mécanique, tension interfaciale
|
Accéder à la ressource
|
|
Qu'appelle-t-on évolution ?
/ BioMedia-UPMC
/ 25-02-2011
/ Unisciel
Lecointre Guillaume, Dettaï Agnès
Voir le résumé
Voir le résumé
Il existe au moins cinq représentations courantes de ce mot
L’évolution, un processus par lequel les espèces se transforment
L’évolution, la théorie générale de la biologie et de la paléontologie
L’évolution, le déroulement historique des formes de vie à la surface de la planète : un scénario, un film, une fresque, un « grand récit »
L’évolution, un arbre qui établit les relations d’apparentement entre tous les êtres vivants
L’évolution, la marche vers le progrès, organique, culturelle et sociale, voire technique, souvent linéaire Mot(s) clés libre(s) : Evolution, mécanisme
|
Accéder à la ressource
|
|