Tri :
Date
Editeur
Auteur
Titre
|
|
Guy David - Minimal sets (Part 3)
/ Fanny Bastien
/ 24-06-2015
/ Canal-u.fr
David Guy
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
|
Accéder à la ressource
|
|
Guy David - Minimal sets (Part 1)
/ Fanny Bastien
/ 23-06-2015
/ Canal-u.fr
David Guy
Voir le résumé
Voir le résumé
indisponible Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation, minimal sets
|
Accéder à la ressource
|
|
Claudio Dappiaggi - On the role of asymptotic structures in the construction of quantum states for free field theories on curved backgrounds
/ Fanny Bastien
/ 03-07-2014
/ Canal-u.fr
Dappiaggi Claudio
Voir le résumé
Voir le résumé
In the algebraic approach to quantum field theory on curved backgrounds, there exists a special class of quantum states for free fields, called of Hadamard form. These are of particular relevance since they yield finite quantum fluctuations of all observables and they can be used to implement interactions at a perturbative level. Although their existence is guaranteed on all globally hyperbolic spacetimes, for long time only few explicit examples were known. A way to bypass this problem exists on those manifolds which possess a null conformal boundary, such as all asymptotically flat spacetimes. In this talk we shall discuss this construction in particular for massless, conformally coupled scalar fields and for linearised gravity. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Karma Dajani - An introduction to Ergodic Theory of Numbers (Part 2)
/ Fanny Bastien
/ 19-06-2013
/ Canal-u.fr
Dajani Karma
Voir le résumé
Voir le résumé
In this course we give an introduction to the ergodic theory behind common number expansions, like expansions to integer and non-integer bases, Luroth series and continued fraction expansion. Starting with basic ideas in ergodic theory such as ergodicity, the ergodic theorem and natural extensions, we apply these to the familiar expansions mentioned above in order to understand the structure and global behaviour of different number theoretic expansions, and to obtain new and old results in an elegant and straightforward manner. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Karma Dajani - An introduction to Ergodic Theory of Numbers (Part 1)
/ Fanny Bastien
/ 17-06-2013
/ Canal-u.fr
Dajani Karma
Voir le résumé
Voir le résumé
In
this course we give an introduction to the ergodic theory behind common
number expansions, like expansions to integer and non-integer bases,
Luroth series and continued fraction expansion. Starting with basic
ideas in ergodic theory such as ergodicity, the ergodic theorem and
natural extensions, we apply these to the familiar expansions mentioned
above in order to understand the structure and global behaviour of
different number theoretic expansions, and to obtain new and old results
in an elegant and straightforward manner. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
|
Accéder à la ressource
|
|
Mihalis Dafermos - The "inside story" of black hole stability
/ Fanny Bastien
/ 30-06-2014
/ Canal-u.fr
Dafermos Mihalis
Voir le résumé
Voir le résumé
TBA Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, General Relativity, institut fourier, summer school, asymptotic analysis
|
Accéder à la ressource
|
|
Alessandro Chiodo - Towards global mirror symmetry (Part 3)
/ Fanny Bastien
/ 29-06-2011
/ Canal-u.fr
Chiodo Alessandro
Voir le résumé
Voir le résumé
Mirror symmetry is a phenomenon which inspired fundamental progress in a wide range of disciplines in mathe-
matics and physics in the last twenty years; we will review here a number of results going from the enumerative
geometry of curves to homological algebra. These advances justify the introduction of new techniques, which
are interesting in their own right. Among them, Gromov{Witten theory and its variants allow us to provide a
re ned statement of mirror symmetry. Of course this leads to further open questions (despite much e ort and
progress, Gromov{Witten theory remains unknown in high genus for the quintic threefold). In this course, we
will illustrate the natural problem of moving beyond the local mirror symmetry statement and completing a
framework of global mirror symmetry which is gradually taking shape. We will show how the missing piece in
this picture comes unexpectedly from a classical subject in algebraic geometry: the theory of curves with level
structures. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, courbes, institut fourier, summer school, Gromov-Witten
|
Accéder à la ressource
|
|
Alessandro Chiodo - Towards global mirror symmetry (Part 2)
/ Fanny Bastien
/ 28-06-2011
/ Canal-u.fr
Chiodo Alessandro
Voir le résumé
Voir le résumé
Mirror symmetry is a phenomenon which inspired fundamental progress in a wide range of disciplines in mathe-
matics and physics in the last twenty years; we will review here a number of results going from the enumerative
geometry of curves to homological algebra. These advances justify the introduction of new techniques, which
are interesting in their own right. Among them, Gromov{Witten theory and its variants allow us to provide a
re ned statement of mirror symmetry. Of course this leads to further open questions (despite much e ort and
progress, Gromov{Witten theory remains unknown in high genus for the quintic threefold). In this course, we
will illustrate the natural problem of moving beyond the local mirror symmetry statement and completing a
framework of global mirror symmetry which is gradually taking shape. We will show how the missing piece in
this picture comes unexpectedly from a classical subject in algebraic geometry: the theory of curves with level
structures. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, courbes, institut fourier, summer school, Gromov-Witten
|
Accéder à la ressource
|
|
Alessandro Chiodo - Towards global mirror symmetry (Part 1)
/ Fanny Bastien
/ 27-06-2011
/ Canal-u.fr
Chiodo Alessandro
Voir le résumé
Voir le résumé
Mirror symmetry is a phenomenon which inspired fundamental progress in a wide range of disciplines in mathematics and physics in the last twenty years; we will review here a number of results going from the enumerative geometry of curves to homological algebra. These advances justify the introduction of new techniques, which are interesting in their own right. Among them, Gromov{Witten theory and its variants allow us to provide are ned statement of mirror symmetry. Of course this leads to further open questions (despite much e ort and progress, Gromov{Witten theory remains unknown in high genus for the quintic threefold). In this course, we will illustrate the natural problem of moving beyond the local mirror symmetry statement and completing a framework of global mirror symmetry which is gradually taking shape. We will show how the missing piece in this picture comes unexpectedly from a classical subject in algebraic geometry: the theory of curves with level structures. Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, courbes, institut fourier, summer school, Gromov-Witten
|
Accéder à la ressource
|
|
Dominique Cerveau - Holomorphic foliations of codimension one, elementary theory (Part 1)
/ Fanny Bastien
/ 18-06-2012
/ Canal-u.fr
Cerveau Dominique
Voir le résumé
Voir le résumé
In
this introductory course I will present the basic notions, both local
and global, using classical examples. I will explain statements in
connection with the resolution of singularities with for instance the
singular Frobenius Theorem or the Liouvilian integration. I will also
present some open questions which I will motivate by examples.
Dans
ce cours introductif je m’attacherai à présenter les notions de base
tant locales que globales au travers d’exemples classiques. J’aborderai
des énoncés liés à la résolution des singularités avec par exemple le
théorème de Frobenius singulier ou l’intégration Liouvillienne. Je
présenterai aussi quelques problèmes ouverts que je motiverai encore au
travers d’exemples.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, courbes, institut fourier, summer school, feuilletages, holomorphic foliations
|
Accéder à la ressource
|
|