Nouveautés
Recherche simple :
Accueil
Documents
Pédagogie
Thèses
Publications Scientifiques
Multi-formats
Pédagogie > Recherche par auteurs en fr
  • Nouveautés
  • Recherche avancée
  • Recherche thématique UNIT
  • Recherche thématique
  • Recherche par établissements
  • Recherche par auteurs
  • Recherche par mots-clefs
Auteurs > B > BOYLE MIKE
Niveau supérieur
  • 3 ressources ont été trouvées. Voici les résultats 1 à 3
  |< << Page précédente 1 Page suivante >> >| documents par page
Tri :   Date Editeur Auteur Titre

Mike Boyle - Nonnegative matrices : Perron Frobenius theory and related algebra (Part 4)

/ Fanny Bastien / 25-06-2013 / Canal-u.fr
Boyle Mike
Voir le résumé
Voir le résumé
Lecture I. I’ll give a complete elementary presentation of the essential features of the Perron Frobenius theory of nonnegative matrices for the central case of primitive matrices (the "Perron" part). (The "Frobenius" part, for irreducible matrices, and finally the case for general nonnegative matrices, will be described, with proofs left to accompanying notes.) For integer matrices we’ll relate "Perron numbers" to this and Mahler measures. Lecture II. I’ll describe how the Perron-Frobenius theory generalizes (and fails to generalize) to 1,2,... x 1,2,... nonnegative matrices. Lecture III. We’ll see the simple, potent formalism by which a certain zeta function can be associated to a nonnegative matrix, and its relation to the nonzero spectrum of the matrix, and how polynomial matrices can be used in this setting for constructions and conciseness. Lecture IV. We’ll describe a natural algebraic equivalence relation on finite square matrices over a semiring (such as Z, Z_+, R, ... ) which refines the nonzero spectrum and is related to K-theory.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
 |  Accéder à la ressource

Mike Boyle - Nonnegative matrices : Perron Frobenius theory and related algebra (Part 2)

/ Fanny Bastien / 21-06-2013 / Canal-u.fr
Boyle Mike
Voir le résumé
Voir le résumé
Lecture I. I’ll give a complete elementary presentation of the essential features of the Perron Frobenius theory of nonnegative matrices for the central case of primitive matrices (the "Perron" part). (The "Frobenius" part, for irreducible matrices, and finally the case for general nonnegative matrices, will be described, with proofs left to accompanying notes.) For integer matrices we’ll relate "Perron numbers" to this and Mahler measures. Lecture II. I’ll describe how the Perron-Frobenius theory generalizes (and fails to generalize) to 1,2,... x 1,2,... nonnegative matrices. Lecture III. We’ll see the simple, potent formalism by which a certain zeta function can be associated to a nonnegative matrix, and its relation to the nonzero spectrum of the matrix, and how polynomial matrices can be used in this setting for constructions and conciseness. Lecture IV. We’ll describe a natural algebraic equivalence relation on finite square matrices over a semiring (such as Z, Z_+, R, ... ) which refines the nonzero spectrum and is related to K-theory.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
 |  Accéder à la ressource

Mike Boyle - Nonnegative matrices : Perron Frobenius theory and related algebra (Part 1)

/ Fanny Bastien / 18-06-2013 / Canal-u.fr
Boyle Mike
Voir le résumé
Voir le résumé
Lecture I. I’ll give a complete elementary presentation of the essential features of the Perron Frobenius theory of nonnegative matrices for the central case of primitive matrices (the "Perron" part). (The "Frobenius" part, for irreducible matrices, and finally the case for general nonnegative matrices, will be described, with proofs left to accompanying notes.) For integer matrices we’ll relate "Perron numbers" to this and Mahler measures. Lecture II. I’ll describe how the Perron-Frobenius theory generalizes (and fails to generalize) to 1,2,... x 1,2,... nonnegative matrices. Lecture III. We’ll see the simple, potent formalism by which a certain zeta function can be associated to a nonnegative matrix, and its relation to the nonzero spectrum of the matrix, and how polynomial matrices can be used in this setting for constructions and conciseness. Lecture IV. We’ll describe a natural algebraic equivalence relation on finite square matrices over a semiring (such as Z, Z_+, R, ... ) which refines the nonzero spectrum and is related to K-theory.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, dynamics, institut fourier, summer school, number theory
 |  Accéder à la ressource

rss |< << Page précédente 1 Page suivante >> >| documents par page
© 2006-2010 ORI-OAI