Nouveautés
Recherche simple :
Accueil
Documents
Pédagogie
Thèses
Publications Scientifiques
Multi-formats
Pédagogie > Recherche par mots-clefs en fr
  • Nouveautés
  • Recherche avancée
  • Recherche thématique UNIT
  • Recherche thématique
  • Recherche par établissements
  • Recherche par auteurs
  • Recherche par mots-clefs
Mots-clefs > G > geometric measure theory
Niveau supérieur
  • 40 ressources ont été trouvées. Voici les résultats 21 à 30
  |< << Page précédente 1 2 3 4 Page suivante >> >| documents par page
Tri :   Date Editeur Auteur Titre

Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 1)

/ Fanny Bastien / 15-06-2015 / Canal-u.fr
Tonegawa Yoshihiro
Voir le résumé
Voir le résumé
The course covers two separate but closely related topics. The first topic is the mean curvature flow in the framework of GMT due to Brakke. It is a flow of varifold moving by the generalized mean curvature. Starting from a quick review on the necessary tools and facts from GMT and the definition of the Brakke mean curvature flow, I will give an overview on the proof of the local regularity theorem. The second topic is the reaction-diffusion approximation of phase boundaries with key words such as the Modica-Mortola functional and the Allen-Cahn equation. Their singular perturbation problems are related to objects such as minimal surfaces and mean curvature flows in the framework of GMT.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Francesco Maggi - A quantitative description of almost constant mean curvature hypersurfaces

/ Fanny Bastien / 03-07-2015 / Canal-u.fr
Maggi Francesco
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Xiangyu Liang - An example of proving Almgrem's minimality by product of paired calibrations

/ Fanny Bastien / 02-07-2015 / Canal-u.fr
Liang Xiangyu
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Gian Paolo Leonardi - Towards a unified theory of surface discretization

/ Fanny Bastien / 02-07-2015 / Canal-u.fr
Leonardi Gian Paolo
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Bernd Kirchheim - Equidimensional isometric maps

/ Fanny Bastien / 02-07-2015 / Canal-u.fr
Kirchheim Bernd
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Alessandro Giacomini - Free discontinuity problems and Robin boundary conditions

/ 30-06-2015 / Canal-u.fr
Giacomini Alessandro
Voir le résumé
Voir le résumé
indisponible
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Joseph Fu - Integral geometric regularity (Part 5)

/ Fanny Bastien / 24-06-2015 / Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke in the 1930s, the famous Principal Kinematic Formula expresses the Euler characteristic of the intersection of two sufficiently regular objects in euclidean space, integrated over the space of all possible relative positions, in terms of geometric invariants associated to each of them individually. It is natural to wonder about the precise regularity needed  for this to work. The question turns on the existence of the normal cycle  of such an object A, i.e. an integral current that stands in for its manifolds of unit normals if A is too irregular for the latter to exist in a literal sense. Despite significant recent progress, a comprehensive understanding of this construction remains maddeningly elusive. In these lectures we will discuss both of these aspects.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Joseph Fu - Integral geometric regularity (Part 4)

/ Fanny Bastien / 24-06-2015 / Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke in the 1930s, the famous Principal Kinematic Formula expresses the Euler characteristic of the intersection of two sufficiently regular objects in euclidean space, integrated over the space of all possible relative positions, in terms of geometric invariants associated to each of them individually. It is natural to wonder about the precise regularity needed  for this to work. The question turns on the existence of the normal cycle  of such an object A, i.e. an integral current that stands in for its manifolds of unit normals if A is too irregular for the latter to exist in a literal sense. Despite significant recent progress, a comprehensive understanding of this construction remains maddeningly elusive. In these lectures we will discuss both of these aspects.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Joseph Fu - Integral geometric regularity (Part 3)

/ Fanny Bastien / 24-06-2015 / Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke in the 1930s, the famous Principal Kinematic Formula expresses the Euler characteristic of the intersection of two sufficiently regular objects in euclidean space, integrated over the space of all possible relative positions, in terms of geometric invariants associated to each of them individually. It is natural to wonder about the precise regularity needed  for this to work. The question turns on the existence of the normal cycle  of such an object A, i.e. an integral current that stands in for its manifolds of unit normals if A is too irregular for the latter to exist in a literal sense. Despite significant recent progress, a comprehensive understanding of this construction remains maddeningly elusive. In these lectures we will discuss both of these aspects.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

Joseph Fu - Integral geometric regularity (Part 2)

/ Fanny Bastien / 23-06-2015 / Canal-u.fr
Fu Joseph
Voir le résumé
Voir le résumé
In the original form given by Blaschke in the 1930s, the famous Principal Kinematic Formula expresses the Euler characteristic of the intersection of two sufficiently regular objects in euclidean space, integrated over the space of all possible relative positions, in terms of geometric invariants associated to each of them individually. It is natural to wonder about the precise regularity needed  for this to work. The question turns on the existence of the normal cycle  of such an object A, i.e. an integral current that stands in for its manifolds of unit normals if A is too irregular for the latter to exist in a literal sense. Despite significant recent progress, a comprehensive understanding of this construction remains maddeningly elusive. In these lectures we will discuss both of these aspects.
Mot(s) clés libre(s) : mathématiques, Grenoble, école d'été, institut fourier, summer school, geometric measure theory, calculus of variation
 |  Accéder à la ressource

rss |< << Page précédente 1 2 3 4 Page suivante >> >| documents par page
© 2006-2010 ORI-OAI