Tri :
Date
Editeur
Auteur
Titre
|
|
Astrophysique, physique des particules et astroparticules
/ Mission 2000 en France
/ 03-07-2000
/ Canal-U - OAI Archive
VANNUCI François
Voir le résumé
Voir le résumé
Conférence du 3 juillet 2000 par François Vannuci. L'astrophysique étudie l'infiniment grand de l'univers, la physique des particules étudie l'infiniment petit de la structure de la matière. De plus en plus les physiciens s'intéressent à la connexion entre ces deux frontières. Une nouvelle discipline émerge, on l'appelle l'astroparticule. C'est le domaine où les physiciens des particules, d'abord cantonnés auprès des accélérateurs, apportent leurs méthodes pour sonder l'univers. Cette recherche concerne tant les propriétés de particules d'énergies inaccessibles sur terre, que les centres d'accélérations encore énigmatiques qui leur donnent naissance. Parmi ces "astroparticules" on discutera plus en détail le rôle spécial des neutrinos. Mot(s) clés libre(s) : astroparticule, astrophysique, infiniment grand, matière noire, neutrino, oscillation, photon, physique des particules, rayonnement cosmique, Super-Kamiokande, univers
|
Accéder à la ressource
|
|
Quelques expériences d'initiation à la microscopie électronique
/ Samia SERRI, Palais de la Découverte
/ 01-06-2007
/ Canal-U - OAI Archive
Université Denis Diderot - Paris VII
Voir le résumé
Voir le résumé
Quatre expériences du palais de la découverte illustrent- d’une part le comportement corpusculaire de la lumière et celui ondulatoire d’électrons en mouvement- d’autre part l’influence d’un aimant sur la trajectoire d’un faisceau d’électrons. La notion de lentille électrostatique est introduite.Pour en savoir plus, des exposés sur ces thèmes sont proposés aux visiteurs du palais de la découverte.Générique :Réalisation : Samia SerriImage et son : David BentoMontage et animation : Thierry MaillotMoyens techniques : Université Paris Diderot / Palais de la découverteDirectrice de production : Michèle Brédimas Mot(s) clés libre(s) : Broglie, diffraction des électrons, effet photoélectrique, fentes de Young, force de Laplace, force électromagnétique, lentille électrostatique, lumière, microscope électronique, nature ondulatoire des électrons, photon, théorie corpusculaire newtonienne
|
Accéder à la ressource
|
|
Le monde quantique au travail : l'optoélectronique
/ UTLS - la suite
/ 12-07-2005
/ Canal-U - OAI Archive
ROSENCHER Emmanuel
Voir le résumé
Voir le résumé
L'optoélectronique est une discipline scientifique et technologique qui a trait la réalisation et l'étude de composants mettant en jeu l'interaction entre la lumière et les électrons dans la matière. Ces composants, qui permettent de transformer la lumière en courant électrique et réciproquement, sont des instruments privilégiés pour comprendre le nature de la lumière et des électrons. Il est donc peu étonnant que ce soit le tout premier composant opto-électronique (la cellule photoélectrique) qui soit à l'origine de la découverte d'Albert Einstein de la dualité onde-corpuscule. Dans cette Conférence, nous décrirons comment ce concept fondateur de la Physique Quantique a permis de comprendre les propriétés électroniques et optiques de la matière. Nous décrirons comment ces propriétés quantiques sont mises en oeuvre dans les quelques briques de base conceptuelles et technologiques à partir desquelles tous les composants optoélectroniques peuvent être élaborés et compris. Nous décrirons enfin quelques exemples de ces composants optoélectroniques qui ont changé profondément notre vie quotidienne : - les détecteurs quantiques (caméscopes, cellules solaires, infrarouge
) - les diodes électroluminescentes (affichage, éclairage, zapettes,
) - les diodes laser (réseaux de télécommunication, lecteurs de CD-DVD, internet,
) Nous explorerons finalement quelques nouvelles frontières de cette discipline, qui est un des domaines les plus actifs et des plus dynamiques de la Physique à l'heure actuelle. Mot(s) clés libre(s) : composant électronique, détection quantique, diode, dopage, dualité onde-corpuscule, effet photoélectrique, lumière, mécanique quantique, onde électronique, opto-électronique, photonique, puits quantique, semi-conducteur, théorie des bandes
|
Accéder à la ressource
|
|
La physique quantique - Philippe Grangier
/ UTLS au lycée
/ 16-12-2010
/ Canal-U - OAI Archive
GRANGIER Philippe
Voir le résumé
Voir le résumé
Une conférence de l'UTLS au LycéeLa physique quantique par Philippe Grangier, physicien, directeur de recherche au laboratoire Charles Fabry de l'institut d'Optique, médaille d'argent du CNRS en 2002Lycée Costebelle (83 Hyères) Mot(s) clés libre(s) : Einstein, laser, photon
|
Accéder à la ressource
|
|
La physique quantique (Philippe Grangier)
/ UTLS - la suite
/ 17-06-2005
/ Canal-U - OAI Archive
GRANGIER Philippe
Voir le résumé
Voir le résumé
Nous décrirons des expériences permettant de mettre en évidence des propriétés simples et fondamentales de la physique quantique, comme l'existence de superpositions linéaires d'états, ou celle d'états "enchevêtrés" ou "intriqués". Nous montrerons ensuite comment de tels états peuvent être utilisés dans le domaine très actif de "l'information quantique", pour réaliser des dispositifs de cryptographie parfaitement sûrs, ou pour effectuer certains calculs de manière potentiellement beaucoup plus efficace qu'avec des ordinateurs usuels. Mot(s) clés libre(s) : calcul quantique, cryptographie, équations de Maxwell, infiniment petit, interférence quantique, lumière ondulatoire, mécanique quantique, non-localité, optique quantique, photon, quantification de la lumière, superposition d'états
|
Accéder à la ressource
|
|
Des cristaux photoniques aux métamatériaux
/ Département de Physique, ENS Lyon CultureSciences-Physique, Catherine Simand
/ 25-02-2009
/ Unisciel
Gralak Boris
Voir le résumé
Voir le résumé
Une conférence de Boris Gralak, chercheur à l'Institut Fresnel à
Marseille. Les cristaux photoniques sont des structures périodiques diélectriques
sans absorption qui présentent des bandes de fréquences interdites à la propagation
de la lumière (ou gap). Ainsi, dans certaines conditions, les cristaux photoniques
peuvent se comporter comme des matériaux d'indice optique inférieur à celui du vide,
voire négatif : ils se comportent comme des métamatériaux, c'est-à-dire des
structures composites présentant des propriétés extraordinaires qui n'existent pas à
l'état naturel. Mot(s) clés libre(s) : cristal photonique, métamatériau, indice optique, lentille, cape d'invisibilité, diélectrique, émission spontanée, métal, bande interdite, lame à faces parallèles
|
Accéder à la ressource
|
|
Les lasers
/ UTLS - la suite, Mission 2000 en France
/ 03-08-2000
/ Canal-U - OAI Archive
GIACOBINO Elisabeth
Voir le résumé
Voir le résumé
Depuis l'invention du premier laser en 1960, la diversité des lasers en couleurs, taille ou puissance n'a fait que croître. Les plus petits lasers sont si minuscules qu'on ne peut les voir qu'au microscope, les plus gros consomment autant d'électricité qu'une ville moyenne. Tous les lasers ont la faculté d'émettre des rayons d'une lumière inconnue dans la nature, qui forment de minces pinceaux d'une couleur pure, et que l'on peut concentrer sur un petit foyer. Ils exploitent la possibilité, prévue par Einstein, de multiplier les photons, qui sont les particules formant la lumière, dans un matériau bien choisi. Les caractéristiques des lasers, fort différentes de celles des lampes ordinaires, leur ont ouvert des utilisations très variées. En délivrant sa puissance de façon localisée, l'outil laser est capable de percer, découper et souder avec vitesse et précision. Il est aussi utilisé en médecine où il remplace les bistouris les plus précis et cautérise les coupures. Ce sont des lasers circulant dans des fibres optiques, fins cheveux de verres dont le réseau couvre maintenant le globe terrestre, qui transportent maintenant les conversations téléphoniques et les données sur Internet. Le laser intervient aussi dans les analyses les plus fines, en physique, en chimie ou en biologie, où il permet soit de manipuler les atomes ou les molécules individuellement, soit de véritablement déclencher et photographier des réactions chimiques ou biologiques. Il identifie les molécules qui composent l'air et beaucoup de grandes villes s'équipent de lasers spéciaux pour détecter la pollution à distance. Les sciences et techniques d'aujourd'hui vivent à l'heure du laser. Beaucoup pensent que le XXIe sera celui de l'optique, et ceci, grâce au laser. Mot(s) clés libre(s) : absorption, amplificateur optique, cavité optique, émission stimulée, laser, lumière, onde lumineuse, optique quantique, photon, rayonnement
|
Accéder à la ressource
|
|
Thémistocle (1990)
/ Serge GUYON, Philippe ROY, Université Paris XI-SCAVO, CNRS - Centre National de la Recherche Scientifique
/ 01-01-1990
/ Canal-U - OAI Archive
GHESQUIERE Claude, ROY Philippe
Voir le résumé
Voir le résumé
Parmi les signaux que nous envoie l'espace sous forme de photons, les rayons gammas, venant des profondeurs de l'univers, sont les plus énergétiques. Ce film explique à l'aide d'animations l'origine des gammas cosmiques et le principe de leur détection, et présente l'expérience Thémistocle qui utilise des réseaux de détecteurs optiques au sol pour repérer des sources de rayons gammas. Lors de son entrée dans l'atmosphère, une particule cosmique est multipliée et forme une gerbe de particules secondaires d'énergies plus faibles. Le fait que les gammas arrivent d'une direction fixe dans l'espace permet de les identifier comme tels. Dans les Pyrénées, là où les bergers depuis toujours regardent vers le ciel, sur le site de l'ancienne centrale solaire EDF Thémis, 18 télescopes ont été installés. Le cône de lumière accompagnant les gerbes de particules gammas, appelé lumière Tcherenkov, est concentré par les miroirs concaves et détecté par un photomultiplicateur qui transforme la lumière en signal électrique et l'amplifie. Les ordinateurs enregistrent les signaux et calculent les directions pour repérer la source fixe. Ces appareils ont été conçus, mis au point puis montés par des laboratoires de recherche d'Ile de France, de Genève et de Perpignan.GénériqueRéalisateurs : Serge GUYON (SCAVO, Univ, Paris XI, Orsay) et Philippe ROY Auteurs scientifiques : Claude GHESQUIERE (LPC - Collège de France, IN2P3, URA CNRS, Paris) et Philippe ROY (LAL, IN2P3, UMR CNRS, Orsay) Production : Université Paris XI-SCAVO, CNRS AV et CNRS-IN2P3 Diffuseur : CNRS Images. www.cnrs.fr/cnrs-images/ Mot(s) clés libre(s) : particule cosmique, photon, rayon gamma
|
Accéder à la ressource
|
|
Les nanostructures semi-conductrices
/ UTLS - la suite
/ 08-07-2005
/ Canal-U - OAI Archive
GéRARD Jean-Michel
Voir le résumé
Voir le résumé
Lorsqu'un matériau semi-conducteur est structuré à l'échelle du nanomètre ses propriétés électroniques et optiques sont gouvernées par la mécanique quantique. Le puits quantique, formé par une couche mince semi-conductrice d'épaisseur nanométrique, est très communément employé depuis 20 ans pour fabriquer des composants très performants (diodes laser, transistors à gaz d'électrons bidimensionnel). De nombreuses études sont aujourd'hui consacrées aux boîtes quantiques semi-conductrices, nanostructures capables de confiner les électrons à l'échelle du nanomètre dans toutes les directions de l'espace. Après avoir présenté et comparé les principales stratégies permettant de fabriquer ces nano-objets, l'exposé s'attachera à montrer combien leurs propriétés sont originales. Une boîte quantique isolée se comporte par exemple à bien des égards comme un macro-atome artificiel ; cette propriété très intéressante permet de reproduire dans un système solide des expériences d'optique quantique jusque là réalisées avec des systèmes atomiques. Pour conclure, les perspectives d'application très prometteuses des boîtes quantiques dans des domaines aussi variés que l'optoélectronique, les communications quantiques, la micro/nanoélectronique ou la biologie seront brièvement présentées. Mot(s) clés libre(s) : boite quantique, mécanique quantique, nanocristaux, nanostructure, nanotechnologie, photon, semi-conducteur
|
Accéder à la ressource
|
|
De la diode laser à la source à un photon
/ Physique au Printemps 2010, ENS Lyon CultureSciences-Physique, Catherine Simand
/ 24-03-2010
/ Unisciel
Gérard Jean-Michel
Voir le résumé
Voir le résumé
Une conférence de Jean-Michel Gérard, chercheur au laboratoire Nanophysique et semi-conducteurs, directeur
du Service de Physique des Matériaux et Microstructures, CEA de Grenoble, présentée dans le cadre de
"Physique au Printemps" 2010. Présentation des sources lumineuses basées sur
les semi-conducteurs et leurs applications. Plus précisément, principe de fonctionnement et nombreuses applications des diodes laser.
Puis présentation de thèmes de recherches récents : physique des boîtes quantiques ; microcavités optiques ; sources de photon unique. Mot(s) clés libre(s) : laser, diode laser, optoélectronique, boîte quantique, microcavité optique, photon, semi-conducteur, épitaxie, puit quantique
|
Accéder à la ressource
|
|